MỘT TIẾP CẬN MÁY HỌC ĐỂ PHÂN LỚP CÁC KIỂU TẤN CÔNG TRONG HỆ THỐNG PHÁT HIỆN XÂM NHẬP MẠNG

Hoàng Ngọc Thanh, Trần Văn Lăng, Hoàng Tùng



DOI: 10.15625/vap.2016.00061

Abstract


Chức năng chính của hệ thống phát hiện xâm nhập mạng (Intrusion Detection System: IDS) là để bảo vệ hệ thống, phân tích và dự báo hành vi truy cập mạng của người sử dụng. Những hành vi này được xem xét là bình thường hoặc một cuộc tấn công. Các IDS ngoài việc xác định một hành vi là bình thường hoặc một cuộc tấn công dựa trên các mẫu đã lưu trữ, còn có khả năng học để nhận dạng các cuộc tấn công mới. Với mỗi kiểu tấn công cụ thể là DoS, Probe, R2L hoặc U2R, tập dữ liệu mẫu có các tính chất đặc thù. Bài viết này đề cập đến việc tìm kiếm kỹ thuật máy học tối ưu phù hợp với mỗi kiểu tấn công dựa trên các thuật toán máy học đã biết như: cây quyết định, K láng giềng gần nhất, máy vectơ hỗ trợ (SVM), mạng nơron nhân tạo,… Từ đó, xây dựng một bộ phân lớp lai đa tầng trên cơ sở sử dụng các kỹ thuật máy học tối ưu phù hợp với mỗi kiểu tấn công ở mỗi tầng. Kết quả thí nghiệm trên tập dữ liệu KDD99 sử dụng đánh giá chéo 5-fold cho thấy, bộ phân lớp lai đa tầng kết hợp các kỹ thuật máy học: cây quyết định, mạng nơron nhân tạo và SVM có độ chính xác dự báo cao nhất: 99.83% khi phân lớp các truy cập bình thường và 99.58% khi phân lớp các kiểu tấn công.

Keywords


Máy học, IDS, an ninh mạng



Copyright (c) 2017 PROCEEDING of Publishing House for Science and Technology



PROCEEDING

PUBLISHING HOUSE FOR SCIENCE AND TECHNOLOGY

Website: http://vap.ac.vn

Contact: nxb@vap.ac.vn