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ABSTRACT - Invertible elements in quotient polynomial rings have been exploited to construct some interesting public-key
cryptosystems such as NTRU and pNE. In this paper, we first introduce a special class of binary quotient polynomial rings in which
the set of invertible elements is very large. By exploiting that set, we propose a novel a secret-key encryption scheme which not only
operate efficiently but also secure under the chosen plain-text attack (or CPA-secure).
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I. INTRODUCTION

The applications of invertible elements in polynomial rings R,  =Z [x]/(x" —1) in cryptography are typically
in constructing a famous probabilistic public-key cryptosystem NTRU [4] and some variants such as CTRU [6] and
especially pNE [5] which operates in R, . | s€ Z* and is so far the unique provably-secure variant of NTRU.

The advantage of using invertible elements in encryption schemes is the computation speed. The modular
multiplication in polynomial rings R, take O(n*) operations. By exploiting this feature, along with security related to
some hard problems over lattices, NTRU is faster and generally considered as a reasonable alternative to the encryption

schemes based on integer factorization and discrete logarithm over finite fields and elliptic curves and is standardized
in IEEE P.1363.1 standard in 2008.

Binary quotient polynomial rings R, , =Z,[x]/(x" +1), a class of R, , although popularly used in error-

nq >

correcting codes, have been not widely applied in cryptography except a special class of special class of R , where

n,2

n=2"|Ne Z".In 2002, the cyclic multiplicative groups in R, , are exploited to propose a secret-key cryptosystem

and in [7] which is then developed as a new variant of DES in [8].

In section IIl we show that there is a large set of invertible elements in R, , =Z,[x]/(x" +1) where

n=2"|Ne Z" (Theorem 1) and propose an efficient algorithm for computing inverse in those rings. By exploiting

that set, in section IV, we construct a novel probabilistic secret-key encryption scheme, named RISKE, which is fast
and proved secure under the chosen plain-text attacks (CPA-secure) (Theorem 3). The conclusion and proposal about
further research is mentioned in Section V.

II. PRELIMINARIES

In this section, we firstly recall some notions about provably secure encryption scheme. Besides, the binary
quotient polynomial rings is introduced as a necessary background for the next parts.

A. EAV-secure and CPA-secure encryption schemes
Definition 1: An encryption scheme, denoted by TI(G,E,D,K,P,C), is constructed by three algorithms G (key

generation) £ (encryption) and D (decryption) along with three spaces P (plain-text space), C (cipher-text place) and
K (key space).

Definition 2 (definition 3.4 [1]): With variable ne Z*, a function f(n) is called negligible if for every polynomial

p(n) there exists an integer N, such that for all n> N, it holds that f(n) < % .
p(n

2

—logn

Proposition 1: 27" and n are all negligible.

Lemma 1: Function f(n)= 1/(2" —1) is negligible.
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Proof: Since 2" >2"—1 with n>0, we have 1/(2"—1)<2™™*" . On the other hand, by Proposition 1, 2™ is

negligible thus 2-"*" is also negligible. Hence, for every polynomial p(n) there exists an integer N, such that for all
n> N, it holds that
R GUIP L thereby n; <L
p(n) -1 p(n)

According to Definition 2, f(n) = 1/ (2" -1) is negligible.

Lemma 2: If q(n) is a polynomial of n then q(n).2™" is negligible.

Proof: Since 27" is negligible, there exists an integer N, such that for all n> N, it holds that 27" < for

p(n)
polynomial p(n)=g(n).r(n) where r(n) is arbitrary. As a result, there always exists an integer N, such that for all

—n

n> N, it holds that g(n).2™" <% for every r(n) thereby g(n).2™" is negligible. ]
r(n

Definition 3 (3], page 63 [11): The definition of eavesdropping indistinguishability experiment on a secret-key

eav

encryption scheme, denoted as SecK’\'},(n), is the following procedure.

1. Adversary A chooses a pair of message m,,m, of the same length. Notice that the length of m,,m, may be
different to n .

2. A key k of the length n is randomly chosen from key-space ' and a random bit b < {0,1} is chosen. A
cipher-text ¢ «— & (m,) is computed and given to .A. We call ¢ the challenge cipher-text.

3. A outputs a bit 4.

4. The output of the experiment is defined to be 1 if 5=5", and 0 otherwise. If SecK%;(n) then we say A

succeeded.

Definition 4 ([3], page 82 [1]): The formal definition of CPA indistinguishability experiment on a secret-key encryption

a

scheme, denoted as SecK'['},(n), is the following procedure.

1. Adversary A is given oracle (unlimited) access to &, and outputs a pair of message m,,m, of the same length.

Notice that the length of m,,m, may be different to n .

2. A key k of the length n is randomly chosen from key-space K, a random bit b < {0,1} is chosen and a
cipher-text ¢ «— &, (m,) is computed and given to .A. We call ¢ the challenge cipher-text.

3. A continues to have oracle access to £, outputs a bit 4.

4. The output of the experiment is defined to be 1 if b=5", and 0 otherwise. If SecK%7,(n) then we say A

succeeded.

Definition 5 (definition 3.21 [1]): A secret-key encryption scheme 11 has indistinguishable encryptions in the presence
of eavesdropper, denoted as EAV-secure, if for all probabilistic-time adversaries A

Pr{SecK’; (n) =1] < %+ H(n)

where p(n) is negligible.

Definition 6: A secret-key encryption scheme I1 has indistinguishable encryptions under a chosen plain-text attack (or
CPA-secure) if for all probabilistic-time adversaries A

Pr[SecK ' (n) =1] < %'f‘ u(n)

where p(n) is negligible.
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It can be realized that the attack in CPA indistinguishabity experiment, where adversary has unlimited access to
encryption procedure £, is stronger than that in eavesdropping one. Hence, we can say, CPA-secure is more secure
than EAV-secure.

B. Binary quotient polynomial rings
Definition 7: The binary quotient polynomial ring R, , = Z,[x]/(x" —1) is the set of polynomials f which have degree
smaller than an integer n and coefficients in binary rings Z,. For convenience, we denote R, , by R, in which 2 is

implicit.

n=l
An element fe R, can be represented as f = 2 f,.x' in polynomial-form or f =(f,, f;,..., f,,) in vector-

i=0

form. In R, , the multiplication operation, denoted by ‘*’, is given explicitly as a cyclic convolution product modulo

x"—1.Le., if h=f+*g then h has coefficients
h=(C Y f.g)mod2[0<k<n-I.
i+ j=kmodn
The addition operation in R, is denoted by ‘+ * and thus if 2= f + g then
n-l1
h=> h.x'|h=(f+g)mod2.

i=0
Definition 8: The Hamming weight of arbitrary polynomial R, is denoted as w(f).
Definition 9: In R, a polynomial w(f) is invertible if there exists some g such that f*g=1.
Definition 10: The set of polynomials having odd Hamming weight in R, is denoted as I,.

It is clear that

IVI

total number of polynomials in R .

= |Rn | / 2=2"" that is, the number of polynomials having odd Hamming weight is a half of

Definition 11: The ratio of the number of invertible elements over the total number of polynomials in R, is denoted as
K, .

n

AN +
IIL. INVERTIBLE ELEMENTS IN & [7=2".Ne Z

In this section we show that, in R, |n=2",Ne Z* denoted by R ., all elements having odd Hamming weight

is invertible. Specifically, the total number of invertible elements in this ring is 2"~ which is a large function of
variable 7 .

Lemma 3:In R, if w(f)=2k and w(g) =2l where k,le Z" then w(f +g) is even.

Proof: By presenting polynomials as f = 2:01 fx' and g= 2:01 g,x', respectively, we have

h=f+g=3" "hx'
where 5, =(f, +g,)mod2. Since f,,g, € GF(2) then 4, =0 if and only if f, =g,. Let S denote the set containing
the values i such that f, =g, =1.It easy to see that

w(h) =w()=| S [+w(g)-|S |=2(k+1-|S|). T

In more general, if 4 is the summation of polynomials having even Hamming weight then w(%) is even.

Lemma 4:In R, if w(f) is even then Nge R, w(g* f) is even.

n’

Proof: Suppose that the presentation of g is g = ZZ;I g,x' we have

n—l1
h=g*f=Ygx*f.
i=0

Since w(g, x' * f)=g,.w(f) and is thus always even, by Lemma 3, w(h) is even.[]
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Lemma 5: In R, all polynomials having even Hamming weight are not invertible.

Proof: Suppose that /€ R is a polynomial having even Hamming weight. By Lemma 5, Vge R , w(g* f) is always
even. Since w(l) then there does not exist any polynomial % such that w(f #h)=1. As a result, we can say, f is not

invertible in R, .

. . . . . 1 .
As a consequence, the maximum number of invertible elements in R is equal to |In| =2"" and the maximum

of K, is |L|/|R,|=1/2.

Lemma 6: In R
odd.

n’

if f is a polynomial having deg f <n-2 and s= (w(f)+1)m0d2.x"71 + [ then w(s) is always

Proof: Since deg f <n—2, w(s)=w(f)+w(g) where g =w(f)mod2.x"". If w(f) is even then w(f)mod2+1=1
and w(g) =1 thereby w(s) is odd. Otherwise, w(g) =0 then s= f and w(s)=1 is also odd. ]

Theorem 1: In R, all polynomials in f e I, are invertible. Consequently, the number of invertible elements in those
rings is 2% and K. gets maximum.
2V

Proof: With n=2", f canbe presentedas f = Y f,x'. Since f,€ Z,, f7 = f, mod2 and

i
i=0

N g V1 Ny oy )
fZ = (z f;x')z = z (f;xl)2 — z J([Z(xz)2 = z (fl' modz).xlzmodz
=0 =0 i=0 i=0
thereby

; 2V Y 2V N . N A
Va =D, fix') =Y (fmod2).x” ™ =Y (f,mod2)=w(f)mod2.
i=0 i=0 i=0

If fel, then w(f) is odd thus w(f)mod2=1. As a result, £ =1.Let g=f*" wehave g*f=1 and

g is the inverse of f in Rz” . Since |I | = Nt , KzN =1/2 and gets maximum. (]

For example, when N =2 ,in R,, there are totally 16 polynomials including zero and I, consists of 8 elements
{l,x,xz,x3,1+x-i—xz,l+x+x3,l+x2 +x°, x+x? +x3}
with 8 corresponding inverses
L, 2,01+ + 7 x+ X7+ 1+ x+ x5, I+ x+x°} .

In [2], 7, is proved a cyclic multiplicative group and 2" is pointed out the maximum order of all polynomials
feR, ie, ord(f) divides 2" Hence, we can find the inverse of f more efficiently by the following algorithm
instead of computing g = /> ' .

Algorithm 1: Algorithm for finding the inverse of invertible element in R ,
INPUT: A polynomial fe/l, .
OUTPUT: A polynomial ge 7, suchthat g*f=1.
ALGORITHM:

1.Set f¢eg.

2.Set a < f*mod2.

3.Fori from1to n—1 do

a. If f*g=1 return g.

b. Set g« g*a.
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c. Seta«a’.

For example, in R, , to find the inverse of f = x +x*+x, because ord (H= 22 =4 using above algorithm,
we can compute g = f>, at step i =2, instead of computing g = f” .
IV. RISKE CRYPTOSYSTEM

In section ILIII, we see that, all polynomial having odd Hamming weight in R, are invertible. By exploiting

this feature, in this section we propose a new probabilistic secret-key encryption scheme, called RISKE (Random
Invertible Secret-Key Encryption scheme), which is then proved CPA-secure. The underlying algebraic structure of
RIKSE is summarized in Table 1.

Table 1: Underlying algebraic structure and theoretical performance analysis of RISKE

Parameters Value

Polynomial ring R, =Z,[x]/(x"+1)|L=2"1e Z*
Key space K={kel, |0<deghk<N-1}
Key-size N<L

Plain-text space P={meR, |degm<L-1}
Plain-text length L-1

Cipher-text space C=R,

Cipher-text length L

A. Key generation
With C={I, |0<degk <n—1}, sender and receiver share a random invertible polynomial ke K as common
secret-key. Since, degk <n—1 we can present k by n bits thereby key-space.
The condition degk >0 is to ensure that we cannot use k£ =1 as secret-key in RISKE. Consequently,
|K|=2""-1.
B. Encryption
To encrypt (L—1)—bits plain-text m , the sender first computes L —bits
M =(w(m)+1)mod2.x"" +m (1.1)
then outputs L —bits cipher-text
c=M=+k (1.2)
Notice that, by Lemma 6, w(M) is always odd thereby, according to Theorem 1, both M and c¢ are invertible
in R, .
C. Decryption
To decrypt L—bits cipher-text c, receiver first computes L —bits
M=c*k! (1.3)
where k7' is inverse of k in R, obtained by Algorithm 1, thereby recovers (L —1)—bits plain-text as
m=M, x""+M (1.4)
where M, , is the coefficient of monomial x“~' in polynomial presentation of M .
D. A small example
Sender and receiver choose L =2’ =8 and N =5 to construct RIKSE.
1. Key generation

Sender and receiver share 5—bits secret-key k =(00111) in binary form or k=x”+x+1 in polynomial form.

Notice that w(k) =3 and the inverse k' of k in R,, computed by Algorithm 1,is k™' =k" =x" +x* +x* +x" +x.
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2. Encryption

To encrypt 7—bits plain-text message m =(1010011) in binary form or m=x"+x"+x+1 in polynomial

form, sender firstly, by (1.1), computes 8—bits M =x" +x°+x* +x+1 and then, by (1.2), sends 8—bits cipher-text
c=M#k=x"+x*"+x +x+1

in polynomial form or ¢ =(00111011) in binary-form to receiver.

3. Decryption

To decrypt 8—bits cipher-text message ¢ =(00111011), receiver firstly, by (1.3), computes 8—bits
M=k"sc=x"+x"+x*+x+1

and then, by (1.4), with M, =1, recovers 7—bits cipher-text
m=x 4+ +x°+x +x+D)=x"+x" +x+1.
E. Theoretical security analysis

1. Security under the eavesdropping indistinguishability experiment

Theorem 2: RISKE encryption scheme is EAV-secure.

Proof: Recall that, given ¢=M *k we can get M =k '*c where k™' is inverse of k. Although A does not have
secret-key, A can try each k€ K to compute M '. Hence, the probability for .A decrypts successfully is

Pr{M'=M]=Pr{k™" #*c=M]=Pr[k" =M *c™"]
where ¢ is the inverse of ¢ in R, .

Since k is chosen randomly in K while M” and ¢ are fixed. Consequently,

PI’[M':M]:Pr[kil =M*cl]=ﬁ_

In the EAV-experiment, with ¢ = M, *k received from encryption procedure, adversary A can obtain b"=b
by simply guessing with success probability 1/2 or trying all ke K to compute M =k #c until M = M, . Suppose

that A has to try p(N) times to obtain M =M, , where p(n) is a polynomial function of N to make sure that this
attack can be deployed in polynomial time, we have

Pr[SecK’'; (n) =1]= %—F p(n).(Pr[M = M ].Pr[b=0]+Pr[M = M,].Pr[b =1])

:l+p(n).[L+LJ:%+p(n) —%+ pn)

2 2/K]  2|K] K| 2 27 -1
Since p(n) is still a polynomial, by Lemma 1,

p(n)
20D _q

is a negligible. As a result, according to Definition 5, RISKE encryption scheme is EAV-secure.
2. Security under the CPA indistinguishability experiment
Theorem 3: RISKE encryption scheme is CPA-secure.
Proof: Recall that, given a pair of cipher-text ¢ and corresponding plain-text M, from encryption procedure and if we
have ¢'=M, *k then
Pr{c'=c]=Prlc =M, *k]=Prlk=c"' *M,"],

where M, is the inverse of M, in R,.



626 RISKE, A NOVEL CPA-SECURE SECRET-KEY ENCRYPTION SCHEME BASED-ON INVERTIBLE ELEMENTS IN...

In addition, since k is chosen randomly in K while M, "and ¢ are fixed,

Prlc'=c]=Prlk=c"*M,'] =ﬁ

In CPA indistinguishing experiment, adversary A can obtain "= by one of two following ways:

1) Using the same algorithm to find » in EAV distinguishing experiment;

2) Randomly choosing b€ {0,1} and querying encryption algorithms ¢(n) times with input M, to get output
c' until reaching c¢'=c. Notice that g(n) is a polynomial function of »n to make sure that this attack can
be deployed in polynomial time.

Thus, we have

Pr[SecK '}, (n) =1] = Pr[SecK; (n) = 1]+ ¢q(n).Pr{c' = c]

= Pr[SecK'; (n) =1]+ q(n).ﬁ
L pO+a(n) _ 1 pl+q(n)
2 K| 2 27—l

Since g(n) = p(n)+q(n) is also a polynomial, by Lemma 1 and Lemma 2,

g(n)
2(/171) _1

is a negligible. Therefore, according to Definition 6, RISKE encryption scheme is CPA-secure. (]
F. Theoretical performance analysis

The important advantage of RISKE is computation speed, both algorithms for encryption and decryption of
RISKE are one modular polynomial addition and one multiplication in R, and cost O(L*) bit operations.

The disadvantage of RIKSE is that we must choose k€ K uniformly at random i.e., each session needs a
random and fresh secret-key shared between sender and receiver. By this reason, RIKSE should be used in combination
with some public-key encryption scheme to construct a hybrid cryptosystem in which long plain-text message is
encrypted by RIKSE while the random secret-key for each session is encrypted by associated public-key cryptosystem.
That hybrid encryption scheme will inherits both the convenience of asymmetric-key cryptosystem and the efficiency
of symmetric one.

G. Parameter selection

Since RISKE is CPA-secure, the probability for adversaries to break RIKSE is negligible. However, to prevent
brute-force attack, the value N must be large enough. For practical application we propose N at least 1024 thereby

— ooz

[>10. In that case, the key-security and message-security of RISKE are at least 2" . For applications

requiring high security, we recommend N is about 4096.

Besides, the larger is L than N, the more efficient is RISKE. Hence, in practice, we can use RISKE to enhance
the efficiency of public-key cryptosystem having large message-expansion factor such as NTRU and pNE.

V. CONCLUSION

As mentioned above, although RISKE is efficient, for practice uses, choosing a suitable public-key
cryptosystem to encrypt and share the random secret-key is an interesting issue for future works. Besides, since RISKE
is based-on /, finding other classes of quotient polynomial rings R, which have large K, (i.e., maximum or nearly

maximum) is another open topic for our further research.
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RISKE, MOT SO DO MAT MA AN TOAN VO'I CAC TAN CONG BANG
BAN RO BU'Q'C CHON DUA TREN CAC PHAN TU’ KHA DAO TRONG
VANH DA THU'C NHI PHAN CO BAC HO'U HAN

Cao Minh Thing, Nguyén Binh

TOM TAT - Cdc phan tir kha nghich trong vanh da thirc ¢é bdc hitu han di dwoc khai thdc dé xdy dung mot sé hé mat khd thii vi
nhu NTRU hay pNE. Trong bai bao nay, trudc tién, ching toi sé gioi thiéu mot I6p dac biét cua cdc vanh da thirc ¢d bdc hitu han va
hé s6 nhi phén, trong do, tdp cac phan tir kha nghich la rét lom. Bang cdch khai théc tdp cdc phan tir nay, ching t6i dé xudt mét so
a6 mdt ma khéa bi mat méi khéng nhing c6 hiéu qué md héa cao ma con an todn véi cac tan cong bang ban ré dwoe chon (hay con
goi la CPA-secure).



