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TÓM TẮT - Phát hiện mặt phẳng là một nghiên cứu quan trọng trong cộng đồng nghiên cứu về robot, đặc biệt là trong các nghiên 
cứu xây dựng các hệ thống hỗ trợ cho người khiếm thị. Nó đã được thực hiện trong nhiều hướng tiếp cận như RANSAC, các biến thể 
của RANSAC, 3D Hough Transform, Least Squares. Nó cũng được áp dụng trong nhiều ứng dụng như: xây dựng lại không gian 3D, 
phân tích cảnh, phân đoạn các vùng dữ liệu, xác định vị trí của các đối tượng,...vv. Kết quả của các hướng tiếp cận trước là một 
hoặc nhiều mặt phẳng trong cảnh. Nhưng trong thực tế, đối với mỗi ứng dụng riêng có thể chỉ tập trung vào một mặt phẳng (mặt 
phẳng quan tâm). Trong bài báo này chúng tôi đề xuất một hướng tiếp cận mới cho phát hiện một mặt phẳng quan tâm trong cảnh 
phức tạp và xử lý thời gian thực từ đám mây điểm (point cloud) của ảnh độ sâu (depth) của Kinect. Nó dựa trên sự kết hợp của 
PROSAC (một giải thuật cho ước lượng mô hình mặt phẳng) và các ràng buộc hình học của môi trường. Chúng tôi có so sánh 
hướng tiếp cận mà chúng tôi đề xuất với một số hướng tiếp cận khác cho bài toán này. Các kết quả thí nghiệm cho thấy hướng tiếp 
cận của chúng tôi cao hơn so với các hướng tiếp cận truyền thống. 

 
 


