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Abstract

The mechanisms of parallel structure mechanisms are
widely deployed in different areas. The industry of
training simulators is one of the areas where the usage
of such mechanisms is most common and effective
solution. This paper presents the conceptual of a
rotational parallel mechanism (Rotopod mechanism).
This mechanism is used to reproduce movement,
inverse kinematic, the working space were analysed.
Computational tools were used to resolve equations,
create a virtual design in the conceptual design. The
rotational parallel robot used six servomotors and six
links with spherical joints that provide 360° rotational
capabilities on its axis. That mean, the working space
of the rotopod mechanism - the universal base for a 6-
DoF training simulator. The purpose is to achieve an
increase in functionalities of parallel mechanisms in
view of their possible singularities.

Keywords: Rotopod mechanism, parallel mechanism,
kinematic analysis, working space, singularity.

Tom tat

Céc co ciu c0 cau triic song song dugc trién khai rong
rdi trong cac linh vuc khac nhau. Nganh cong nghiép
mo phong huan luyén 1a mét trong nhiig linh viyc ma
viéc sir dung cac co cdu nhu vay I giai phap pho bién
nhét va co hiéu qua. Bai bao trinh bay cac y tudng cua
mot co ciu song song quay (co ciu Rotopod). Co ciu
song song duoc st dung dé tai tao chuyén dong, dong
hoc ngugc, khéng gian lam viéc da dugc phén tich.
Coéng cu tinh toan dugc st dung dé giai cac phuong
trinh, tao ra mot thiét ké ao trong ¥ tusng thiét ké.
Robot song song quay su dung sau mo to va sau lién
két véi cac khop cau dé cung cip kha nang quay 360°
quanh truc cta no. Nghla la, khong gian lam viéc cua
C4c co cau Rotopod — ¢6 6 bac ty do chuyén dong cua
mo phong. Muc dich la dé dat dugc sy gia tang chuc
nang cua cac co c4u song song khi tinh dén tinh ky di
Cua co CaU

Tur khoa: Co céu Rotopod, co ciu song song, phan
tich dong hoc, khéng gian lam viéc, tinh ky di.

1. Introduction

In recent years, numerous researchers have
investigated the parallel mechanisms and many studies
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have been done on the kinematics or dynamics
analysis. Here, let us mention only some books in
which parallel mechanisms are considered by [2-3,
12]. Reference [4] has given the singularity criteria
based on Jacobian matrices when describing the
various types of singularity. Then, in [10] proposed
other singularity criterion for consideration of these
problems the screw theory based on the approach of
the [5]. This criterion is determined by the constraints
imposed by the kinematic chains, as in [1, 10]. Taking
into account some problems the Pliicker coordinates of
constraint wrenches can be applied by [14-16, 18].
Singularities configuration of the parallel mechanisms
have been discussed in [4], [6-9], [12-13, 19] that
considered to take into account constraints restricting
working space. It is necessary to develop the means of
design automation of such mechanisms in which the
optimal structure and parametrical properties have
combined [17].

The contribution of this paper is to express the
constraints existing in known parallel mechanisms in
another form, as a parallel rotational mechanism is
rotopod mechanism by kinematics analysis. The
rotopod is a novel robot mechanism that combines the
features of wheeled and legged locomotion in an
unusual way. This robot has the advantage of legged
locomotion in stepping its 1-DOF legs over objects,
but its drive mechanism is a rotating reaction mass that
rotates the robot, in a controllable fashion, around each
of its legs, similar to a rotating wheel. The mechanism
has the potential to transfer the energy from the
rotating reaction mass in an efficient manner to the
legs, effecting a spinning forward motion.

2. Rotopod structural analysis
The Rotopod mechanism is a 6-DoF mechanism with
six kinematic chains. Each kinematic chain consists of
a link with two ball joints on the ends of it and a joint
with a drive, all drive joints axis are in one place - so
in practice they are implemented as carriages (see in
Fig. 1).
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Fig. 1. The Rotopod mechanism
Lets start with defining the notation: A, 4,, A3z A4, As,
Ag are the ball joints connected to the output link By,
By, Bs, By, Bs, Bg - are the carriages, L is the length of
the kinematic chain link, R is the radius of the base, r
is the radius of the output link platform. To have a
simple illustration we shall define their values: L
=0,98 (m); R=1,0198 (m); r=0,95 (m).

The first task to find out the working space of the
mechanism is to find angle carriage positions g, @

@, @y, ¥, @ that comply the output link positions.
For the beginning, we must find the matrix to
transition the co-ordinates of the output link to co-
ordinates of the base. We assume this transition as a
sequence of movements: rotation o around OX axis,
rotation 4 around OY axis, rotation y around OZ axis
and then movement x;, y;, z; along OX, OY, OZ
accordingly.
The matrix defining rotation « around OX axis:

1 0 0 0

0 cos(e) —sinle) 0O

0 sinfe) cos(e} 0

.0 0 D 1
The matrix defining rotation £ around OY axis:

"cos(B) 0 sin(f) 0

0 1 0 0
—sin() 0 cos(B) 0
w0 0 0 1

The matrix defining rotation y around OZ axis:
‘cos(y) —sin(y)
sin{y)  cos(y)

i 0

o o

The matrix defining movement x,;, y;, z; along OX,

oy, O0z:
0 =x
0 ¥
1 =z
01
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1
0
0
0

[y = Ly s |

Therefore, the transitional matrix we are looking for is
the multiplication of these matrixes:
feos(y)- cos(f)  cos(y)- sinl §)-sinla)—sinly) - cos{a)
M= sin(y)}-cos(f) cos(y)- cosla) + sin(y)- sinl ) - sinfa)
—sini ) cos(f)- sinla)
hY 0 0
sinly)-sin{a) + cosiy) - cos{a) - sini B} x
sin(y])-cosia) - sinl B) — cosly) - sinfa) .
cos( §)- cosla) z
0 1
The matrix defining the coordinates of ball joints
centers A; (i=1,2,...,6) in the output link co-ordinates:

r —ﬂ,ﬂE?slnl::%} = U,UE?sln[gj

B = —0,0435 0,0435
o 0
1 1
—r‘-:ns[g}+ﬂ,ﬂg?- sin[{%} _,,.m(%}

- slng}— 0,087- cos (%}

0

1
- C0E E\}
—r- sin[§}+ 0,087 —r- 5i.n[§}+ﬂ,ﬂg'? . :usl::;—s}
0 0
1 1 4
So these coordinates in the base co-ordinates can be
found as:
A=M-B
Lets define the @y, @5, @3, @4, Pz, @z angles as
angles between the OX axis and radius-vectors OB;
(i=1,2, ,6) to B]_, Bz, B3, B4, Bs, Be.

r- sing}— 0,087
0

—r- :u5[§}+ 0.027 s'mlr%_\} A

r/ ) \\\
f p i, ||\
1 g/ A /|
'\‘ ,/
\Q B
g e

!

Fig. 3 The base geometry

The angle @y, (Fig. 3), is the angle between radius

vector |, (4; projection to XOY ) and the OX vector.
We must consider the A; position on the XQY finding

this angle if ¥, = 0, then @,, = arccos (y‘"'—i)
l1z
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if ¥;, =0, then ¢,, = 27w — arc cos (y‘q—ijl 1, is the
iy

distance between the XOY co-ordinates center and A,
projection to XOY (Fig. 3):

;= "\"IXA:1 + Fﬁ.:i-
So from the triangle OAB (Fig. 3) angle ;5:

R* +1%, -1,
@7 = arcCos (T),
Ly = +/L2 = Z3, (inFig. 4).
P = oy Ton

Fig. 4. Co-ordinate system and mechanism geometry
From this equation, we have two possible positions
for B, - it depends on how we count ¢;5 clockwise B,
or counterclockwise E; (see in Fig. 3). In the
deployment the mechanism can't have the positions
where its links are crossed and carriages can not
overlap - therefore we assume B; with odd indexes
have g;; clockwise and with even counterclockwise
as a bonus we get symmetrical positioning of the
chains and stability of the rotopod.

3. The limiting criteria while finding
working space

We found the solution that allows finding the working

space of theoretical rotopod model but in real life

applications there are some additional limitations.

e The links length.

e The maximum and minimum distance between the
carriages on the base.

e The impossibility of carriages crossing or
overlapping.

e The maximum and minimum angles between the
links and the base.

e The maximum and minimum angles between the
links and the output link.

¢ Singularities check.

e The impossibility of output link mass center
position outside the base carriages circle.

So let us find the limiting criteria. The first check is

simple the output link joints A; (i=1,2,...,6) can not be

higher than their length so the criteria is Z4; = L.

Analyzing maximum and minimum distance between

the carriages on the base, we shall consider this

distance as an angle.
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Therefore, for the minimum distance we shall look
through the vector multiplication of OB; and OB,

vectors
0 0 sinig,) oSy
Viz= 0 0 —coz{py) |- (gfr_{g;-:j.) .
 —oinlgy)  cos(py) 0 S

UV1Z2 = arcsin(V12;5) ., UV12 is the angle between
B; and B, in radians for our example we shall define
the minimum angle to be 12 degrees. Therefore, we
have the criteria:

UV12 = = aresin(V12,) < 127,

In addition, this check can be used to track the
carriages overlapping and crossing - V12 must be
more than zero.

For the maximum distance we shall consider scalar
multiplication of these vectors (we must note that the
result changes its from positive to negative passing
90°.

(ms(m)'f (ms(qa:])

512 =| sin(g,) | | sin(ps) |

0 ]

For our example, we shall define the maximum angle
to be 120 degrees. Therefore, we have the criteria:

180 :
Uusiz2 = arccos(5127) = 120,

The minimum angle between the links (A;B; vector)
and the base we shall find through the scalar
multiplication of OZ unit vector and A;B; vector
The matrix with B coordinates in the base co-
ordinates system:
'Reos(e,) Reos(p,) Reos(gg)
g —| Rsinlp,) Rsinlp,) Rsin(gp,)

0 0 0
: 1
Rcos(p,) Reoslps) Rcos(gg)
Rsin(gp,) Rsinlp;) Rsin(g,)
0 0 0
1 1 1
K=A-E,

K columns are formed by A; B; vectors (we must note
that the 4-th row is auxiliary) for our example, we
shall define the maximum angle to be 11 degrees so
we have the criteria:

B T o o
_ 11 . .
— —arccos %(K:,_ (D] —LE_!,D 511-(D]

AV AVERANY .1/

ugll =

is the OZ unit vector.
The maximum and minimum angles between the links
(AiB; vector) and the output link we shall find through
the scalar multiplication of OZ’ unit vector and A;B;
vector the same way as with the base for our example
we shall define the maximum angle to be 22 degrees
S0 we have the criteria:
¥ ) 180 .
: — =22

Ty

g

1
— arccos E(K:L] (
Bigy /

By b

[

ral A

ugld = —

f m

2.

?ii\q
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Zy
Vector | Zy |is the unit vector he OZ’ axis
I
0
0Z"'=M: ? , M is the transitional matrix
1

found above.

4. Working space while taking into

account singularities
Next, Influence of singularities on parameters of the
working space of the parallel mechanism is a
significant factor worth investigating. In these
singularity configurations, lost control, it acquires
more mobility and greatly affects the functionality of
the devices. It is necessary to analyze how the criteria
value of existence of the singularity configuration
affects the parameters of the working space that is
necessary to find the limits of the possible values of
those criteria.
We need to verify the proximity to the position
singular of the matrix made from Plucker coordinates
of the unit vectors directed along the axes of the six
legs for each position.
Let us consider a parallel mechanism (Fig. 1.).
Singularities of the mechanism is determined by
closeness to zero of determinant det(E) of the matrix
(E), the matrix made from Pllcker coordinates unit
screws E;, (i=1, ...,6) of axes of wrenches acting from
kinematic chains to the output link. These coordinates
form the (6 x 6) matrix (E):

Xj_ }rl 'Zl XE F]_D -z]L_‘
E= K T 4 X’F F:D z:r;
X, Vg Zg x0 vD 20

All the matrix elements are the Pliicker coordinates of
the unit vectors the unit screw, going through link
A, By (first row), we can find the coordinates:

(Xlr Yy, 31] = [:AlB:foL’ AlBl)-/Lr A1Bls’q')

Ay, A1B1y A1By. are defined by the K matrix.

0 -By By ABy,
xg, ¥ If)=| By 0 By |-|ABy
—By By 0 A By;

for other links, we can calculate it the same way the
unit vectors Plicker coordinate matrix determinant
closeness to the zero is our criteria for singularities
det(E}) = 0,

In addition, the last check - the mass center projection
must be within the hexahedron formed by B;, B,, Bs,
B4, Bs, Bg. The gain of this check is to prevent
appearance of the overturn moment caused by
platform weight.

The question arises, how to choose the singular
criterion. In this section, we is used the criterion that
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operates with the coordinates axes linear motors of
the mechanism. Thus, it is necessary to consider the
matrix composed of these coordinates. Coordinates
axes linear motors with one to four are defined as
follows. We must take a unit vector, which is located
along the corresponding axis, and find three of its
coordinates as normal vector. Those three coordinates
define the direction of the vector. The other three
coordinates needed to establish the position of the
axis in space; we find a vector product of the radius
vector of any point on the axis of the unit vector of
the axis. These moments define the vector product of
unit vector axis relative to the origin.

Here, vector G is the center mass vector in X'¥'Z '
co-ordinate system.

G,

going to the XYZ co-ordinate system.

Go=M:G.

Then we calculate the vector multiplication of BB,
vector (chord between B, and B,) by B;C vector, C is
the mass center projection to XOY.

Therefore, if the multiplication is more than zero C is
located to the left from B;B, and our criteria are:

B,B, x B;C > 0.

We must check all the chords the same way.

Using this data we can scan all the amount of the
output link 6-DoF positions in the potential working
space and using the criteria negate the impossible
positions getting the real life rotopod working space.
The result of such testing can be seen on Fig. 5 with
example parameters we mentioned above (L =0,98
(m); R=1,0198 (m); r=0,95 (m)) - the scanning was
made with parameters is OX axis step 0,05 (m), OY
axis step 0,1 (m), OZ axis step 0,01 (m) and no
rotation about axis.

In Fig. 5., (A), (B) and (C) section show the
projection of the scan to the ZOY, ZOX, XQY the (D)
section shows the overall view.

When the value of the criterion that determines the
proximity to singular configurations is equal to zero,
we can assume that the constraints associated with the
singularity in general, are not imposed in the analysis
of each specific configuration.

Limiting possible module of a determinant of the
matrix (E) to singularity configurations changes the
Plucker coordinates of the wrenches transmitted on the
output link. Methodology for analyzing the
singularities on optimization appearing in the parallel
mechanism and their impact in the working space is
proposed. The practical significance from the fact is
the results obtained in this work increase the
effectiveness of design automation.
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5. Conclusions
In this paper, the constraints existing in known parallel
mechanism in another form as a parallel rotational
mechanism is rotopod mechanism. It allows specifying
the results of structural analysis and parametrical
synthesis of the parallel mechanisms.
This mechanism is used to reproduce movement,
inverse Kinematic, the working space was considered.
By mean of kinematic analysis of the output link, we
obtained the graphs of position and angle needed to
assess possible behavior of the actuator in defined path
then determine the working space of the rotopod
mechanism. Working space of the rotopod mechanism
is limited according to the relation between the ratio of
the diameter of circular guide and the length of the
links. The paper also proposes a methodology for
analyzing the singularities appearing in the parallel
mechanism and their impact in the working space.
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