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Abstract 
Exploration and searching in unknown or hazardous 

environments using Multirobot System (MRS) is 

among the principal topics in robotics. There have 

been numerous researches on searching and detection 

of odor, fire or pollution sources. In this paper, we 

present results on detecting light sources with MRS 

using modified Particle Swarm Optimization (PSO). 

The robot swarm makes use of Artificial Potential 

Field (APF) to avoid collision with obstacles or other 

robots while heading towards areas of highest 

illuminance. Simulation results on Matlab in various 

scenarios have proven the algorithm’s reliability. 

Keywords: PSO, MRS, APF, light source detection  

 

Tóm tắt: Một trong số những vấn đề được quan tâm 

trong robotics là tìm kiếm trong các môi trường không 

biết trước hoặc nguy hiểm đối với con người bằng hệ 

đa robot. Đã có nhiều công trình nghiên cứu phương 

pháp tìm kiếm nhằm xác định nguồn phát tán mùi, 

phát hiện ô nhiễm hay đám cháy. Trong báo cáo này, 

chúng tôi trình bày kết quả nghiên cứu phát hiện 

nguồn sáng bằng hệ đa robot sử dụng thuật toán tối ưu 

bầy đàn (PSO) cải tiến. Được áp dụng một luật điều 

khiển có kết hợp phương pháp trường thế nhân tạo 

(APF), bầy đàn robot có khả năng tránh các vật cản 

trong quá trình di chuyển tới khu vực có độ rọi cao 

nhất. Thuật toán này đã được mô phỏng trên Matlab 

trong nhiều kịch bản và thể hiện độ tin cậy cao.  

Từ khóa: PSO, MRS, APF, phát hiện nguồn sáng 

 

Notation 
Notation Unit Meaning 

   Inertial factor 

    Cognitive learning factor 

    Social learning factor 

  ( )  Velocity of particle i at 

time t 

     ( )  Velocity component 

determined by PSO 

algorithm of particle i at 

time t  

     ( )  Velocity component 

determined by APF 

algorithm of particle i at 

time t  

  ( )  Position of particle i at 

time t 

 ( )  Position of leader (best 

particle) at time t 

  ( )  Best position of particle i 

up to time t 

       Uniform random number 

in [0, 1] 

        The force exerted by 

potential field of a robot 

or a detected point on an 

obstacle, noted j, on robot 

i  

     Distance vector from a 

robot or a detected point 

on an obstacle, noted j, to 

robot i 

     Distance between a robot 

or a detected point on 

obstacle, noted j, to robot 

i 

      Radius of repulsive zone 

surrounding a robot 

u(r)  Heaviside step function 

 lumen Luminous flux 

I candela Luminous intensity 

L lux Illuminance 

λ2  Algebraic connectivity of 

a graph 

 

Abbreviation 
PSO Particle Swarm Optimization 

MRS Multirobot System 

APF Artificial Potential Field 

 

1. Introduction 
As a result of their ability to cooperate and 

coordinate, MRSs are highly efficient in the 

application of searching in unknown environments. 

There have been numerous works on using MRS to 

detect fire, pollution and odor sources [1]. In these 

applications, MRSs are always preferable to single 

robots because of their robustness to local optima [2], 

widespread coverage and high degree of accuracy. 

Numerous algorithms have been developed or adapted 

for MRSs, and PSO is one of them.   
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PSO was first introduced by Russel Ebenhart and 

James Kennedy in 1995 [3] and has rapidly gained 

popularity among bio-inspired heuristic algorithms 

since then.  The algorithm has proven highly effective 

in optimization problems and is famous for its 

efficiency, intuitiveness and simplicity to implement. 

For the above-mentioned reasons, PSO emerges as a 

natural choice for MRSs in exploration mission. 

However, an MRS controlled by PSO algorithm is 

notoriously prone to collision as an intrinsic property. 

Recently, there have been numerous modified PSO 

algorithms proposed for mobile robots in real 

situations. Examples include MPSO with the 

introduction of odor-gated rheotaxis to solve real-

world odor source localization problems [4] and VL-

ALPSO to optimize the motion planning while the 

swarm mobile robots is searching for odor or light 

sources [5]. Both the modified PSO algorithms are 

applicable for mobile robots in obstacle environment. 

In this research, to avoid collisions with obstacles and 

mutual collisions within the swarm during their 

exploration, we integrate into PSO an algorithm 

originally proposed by Oussama Khatib in 1986 for 

single robot path planning, namely APF [6]. 

Nowadays, APF is widely used in researches on 

MRSs that demonstrate the interaction between robots 

and obstacles in their work space [7]. APF generates 

around each robot a virtual potential field containing 

repulsive field and attractive field. Attractive field 

directs each robot towards other robots in the system 

to remain system connectivity while repulsive field 

prevents mutual collisions or collisions with 

obstacles. The forms of potential field and control rule 

are customized in conformity with specific problems. 

In this research, the entire potential field around each 

particle is repulsive, since our objective is to dispose 

of collision in the swarm. The communication range 

of each robot is larger than search space’s size.  

In the simulations, we have successfully used an MRS 

to detect light source or the brightest area in the 

search space. In all scenarios, each robot (or particle 

as described in PSO algorithm) has to move towards 

the mutual target and meanwhile avoid obstacles. For 

the robot swarm to exhibit this behavior, we modified 

PSO algorithm by associating each particle with a 

potential field that exerts repulsive forces to any other 

particle if their distance is less than a predetermined 

value called repulsive radius (rrep). With reliable and 

promising Matlab simulation results, this modified 

PSO algorithm is hopefully applicable in various 

further applications such as dynamic deployment of 

robotic systems, flame detection or optical wireless 

charging.  

This paper presents theoretical background and 

experiments using modified PSO to solve the practical 

problem of detecting light sources (or searching for 

brightest regions in a search space). The methodology 

is discussed in detail in part 2, the simulations, results 

and discussions follow in part 3. Finally, part 4 

concludes this paper with main conclusions and 

directions for further researches. 

2. Methodology 
2.1 APF and its application in the modified PSO 

algorithm 

The APF model is inspired by Artificial Physics with 

quadratic functions, where the choice of coefficients 

is commensurate to the wireless sensor network of 

MRSs. Myriads of architectures for APF have been 

developed in accordance with the users’ definitions 

and specific tasks. In any architecture, the magnitude 

of potential force existing around each robot is 

continuously updated based on information collected 

from its immediate surrounding environment and 

other robots via connection network. Therefore, 

artificial potential forces are used to regulate the 

relation between robots in term of position. Potential 

forces are categorized into two main groups: passive 

forces and active forces. Passive forces are generated 

when robots emit signals and determine distances to 

neighboring robots or obstacles by the magnitude of 

reflected signal to avoid obstacles or remain relative 

position with other robots. The signal used in the 

application could be infrared, ultrasound, laser or 

camera [10].  On the contrary, active forces are 

generated from signals from outside sources, usually 

by other robots and transmitted via the 

communication system [7]. In this research, APF is 

only utilized for the purpose of collision avoidance 

and only generates repulsive forces on other particles 

within repulsive region. The repulsive force between 

robot i and robot j is defined by this formula: 

 ( ) ( )3
 uAPFij repG u r rr

r

é ù= - -ê úë û
ij

ij ij

ij

r
F      (1)          

Where G is a predetermined constant used to regulate 

the magnitude of potential forces. Distances between 

robots are measured from their centers. The 

magnitude of this force is zero if i = j. 

Robots in the swarm cannot see an obstacle as a 

whole, however, they can detect points on obstacles 

via on-board sensors. To the robots, obstacles are a set 

of points from which they receive repulsive forces. 

The force exerted on a robot by each detected point is 

determined by an equation similar to equation (1):  

  ( ) ( )3
 uikAP ikk pF rei G u r rr
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Total force exerted on i-th robot of the system is: 
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Where N is swarm population, M is the number of 

detected points on obstacles. 

( )APFi tv  is proportional to this total APF force. The 

impact of  ( )APFi tv  on overall velocity is controlled 

by G. As G increases, the particle is less likely to 

approach obstacles.  
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The next section gives more details on the modified 

PSO algorithms and shows how APF is used to update 

particle’s velocity. 

 

2.2. PSO and the modified PSO algorithm 

Motivated by social behavior of natural swarms in 

search of food or other commodities, PSO is 

especially effective when applied to robotic swarms to 

find local and global optima. The swarms consist of 

homogeneous particles capable of exploring the 

search space collectively. At each step of the 

exploration, the movement of each particle is 

controlled by a velocity comprised of three 

components: inertial, cognitive and social velocity. 

Inertial velocity guides the particle towards its 

previous direction and thus keeps particles’ 

movement smooth, cognitive velocity leads the 

particle towards its personal best position and social 

velocity leads the particle towards the global best 

position [2]. The social learning factor should be 

increased and cognitive factor should be decreased 

throughout the exploration in order to enlarge the 

swarm’s coverage at initial steps. The searching 

process using PSO is implemented in four steps as 

described below: 

1. Initialize:  Generate the population (including 

setting initial position and velocity of every particle 

and evaluating their objective (fitness) function). 

2. Update leader and best positions: Check the swarm 

for new global best position and for new personal best 

positions. The fitness of a position is determined by 

the value returned by objective function. The personal 

best position of a particle is updated if it is worse than 

the particle’s current position, or otherwise remains 

the same.  

If personal best position of any particle is better than 

global best position and all other personal best 

positions, the particle becomes new leader and its 

personal best position becomes global best position. 

3. Update velocity and position:  The position and 

velocity of each particle are updated according to the 

following equations:  

New velocity = inertial velocity + cognitive velocity + 

social velocity

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 21 d dt w t a u t t a U t t+ = + - + -PSOi i i i iv v p x g x    (4)

New position = current position + new velocity × time 

interval 

 ( ) ( ) ( )1 1t t t t+ = + + Di i ix x v  (5) 

4. Check stopping criteria: The process is terminated 

if at least one of the following criteria is satisfied: 

 The current step is equal to the last step  

 The swarm has converged 

Otherwise, the whole process is repeated from step 2. 

To apply PSO to an MRS, each robot is modelled as a 

particle of the swarm and their movements in the 

search space are basically in the same manner as those 

of ideal particles described above. Actual implement 

of PSO for MRSs involves additional techniques to 

solve problems which are not covered in its 

conventional version (because of the ideal nature of 

this algorithm), such as connectivity maintenance and 

collision avoidance. In these simulations, the 

communication range of a robot is assumed to be 

sufficient for connectivity of the MRS and APF is 

used to avoid collision. The actual velocity of a 

particle is determined by: 

 ( ) ( ) ( )i PSOi APFit t t= +v v v  (6) 

We claim that the exploration is successful if the 

swarm converges and the point of optimum 

illuminance is within its region of convergence. The 

criterion for convergence of the swarm will be 

discussed in the coming section.  

 

2.3 Criterion for convergence 

2.3.1 Convergence of a swarm in comparison with 

connectivity of a simple graph 

In this simulation, we use the concept of connectivity 

in a simple graph to define the convergence of the 

swarm. A simple graph is said to be connected if and 

only if there is at least a path from an arbitrary vertex 

to any other vertex, i.e. any two vertices are 

connected. The robot system is modelled as a graph in 

which each robot is a vertex. There is a path between 

two vertices in this model when the distance between 

two corresponding robots does not exceed two times 

of repulsive radius (the radius within which the 

potential repulsive force is applied). The swarm 

converges if its graph model is connected.  

 

2.3.2 Connectivity of simple graph  

In this work, the swarm is said to be convergent if the 

algebraic connectivity of its graph model is positive, 

as the state of the graph’s connectivity is used as 

criterion for convergence of the swarm. In this 

section, fundamental knowledge of graph algebraic 

connectivity is presented. 

The Laplacian matrix is the representation of a graph 

in term of connectivity. It is defined as the subtraction 

of degree matrix and adjacency matrix.  

An adjacency matrix is the means of representing 

which vertices (or nodes) of a graph are adjacent to 

which other vertices. Specifically, the adjacency 

matrix of a finite graph G on n vertices is the n×n 

matrix where the non-diagonal entry aij is the number 

of edges from vertex i to vertex j, and the diagonal 

entry aii equals to zero. The relationship between a 

graph and the eigenvalues and eigenvectors of its 

adjacency matrix is studied in spectral graph theory. 

Degree matrix is a diagonal matrix containing 

information about the degree of each vertex. A degree 

matrix D = diag(d1,...,dn) is corresponding to a graph 

in which i-th vertex has the degree of di. 

The Laplacian matrix has an important property: all of 

its eigenvalues are non-negative. Its second smallest 

eigenvalue λ2 is positive if and only if the graph is 

connected. Then, λ2 is defined as the algebraic 

connectivity of the graph [8]. Recently λ2 has been 

considered a crucial parameter in network-related 
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problems. In some works, λ2 has been observed as a 

measure of system stability and robustness [9]. In our 

simulations, the value of λ2 determines whether the 

swarm is convergent or not. 

 

 

2.4 Introductory concepts in photometry  

2.4.1 Measurement of light 

 Luminous flux () is the measure of the 

power of light perceived by the human eye. 

The unit of luminous flux is lumen (lm). This 

quantity should not be confused with radiant 

flux – the total power emitted by a source of 

electromagnetic radiation. Luminous flux is 

derived from the product of the radiant 

power in Watts and the Visual response 

characteristic of the eye (luminosity 

function). 

 Luminous intensity (I) is a measure of the 

power emitted by a light source in a 

particular direction per unit solid angle, 

which is perceived by the human eye. To put 

it simply, intensity is a measure of the 

strength of visible light emitted in a given 

direction. The SI unit of luminous intensity is 

candela (cd). 

 Illuminance (L) is the total luminous flux 

received by a surface, per unit area. It 

measures how much incident light 

illuminates the surface. Illuminance is 

wavelength-weighted by the luminosity 

function to correlate with human brightness 

perception. In our simulation, light sensors 

equipped with the robots can detect 

illuminance. 

2.4.2 Isotropic light source 

An isotropic light source is a theoretical point source 

of light which radiates uniformly in all directions, i.e. 

its intensity is independent of radiating direction. In 

the simulations, light sources are Lambertian isotropic 

sources. Formulae for principal quantities of the 

sources can easily be derived from definitions:    

 
Φ

 
4

I
p

=  (7) 

 
2

Icos
L

r

q
=  (8) 

Where r is the distance to the source and  is the 

incident angle. 

 

3. Results and Discussions 
3.1 Simulation setup and MRS configuration 

In this research, we implement the modified algorithm 

on a homogeneous MRS in a Matlab environment. 

The radius of each robot (r) is set as unit of length. 

The system has direct communication, the 

communication range is unlimited (beyond the limit 

of search space). r1 is 5×r, i.e. a robot can detect 

obstacles at the distance of 5×r from it. Population 

size varies between 5, 10 and 15. Maximum velocity 

is 1.5×r/step. Each robot is able to acquire the 

illuminance at its position via a light sensor on top.  

If we set r = 1, the search space size is 100×100. In 

the Cartesian coordinate system, the ranges of x and y 

coordinates are both [-50, 50]. We evaluate and test 

the effectiveness of the modified PSO algorithm in 

four scenarios. 

 

3.2 Detection of light sources in different scenarios 

To evaluate the reliability and effectiveness of this 

modified algorithm, we run simulations in four 

scenarios, where number and luminous intensities of 

light sources alter. Throughout the scenarios, 

obstacles vary in position, size and shape. Positions of 

obstacles are referred as their centers. 

 

 
Figure 1. Scenario 1 – Single isotropic source 

 

In the first scenario, a single light source is placed 

above the search space at (20, -20). There are four 

static cylindrical obstacles placed at (-30, -30), (-20, 

30), (0, 0) and (30, 20) as illustrated in Figure 1. The 

radii of cylindrical obstacles used in all scenarios are 

4.  

 

  
Figure 2. Scenario 2 – Double isotropic sources 

 

In the second scenario, two light sources S1 and S2 

are placed at (-20, -30) and (10, 30), with intensity of 

S2 being three times that of S1. There are three static 

cylindrical obstacles at (-10, 0), (20, -30), and (30, 10) 

(Figure 2). 

 



3
rd

 Vietnam Conference on Control and Automation - VCCA-2015 

 

VCCA-2015 

 

 
Figure 3. Scenario 3 – Triple isotropic sources 

 

In the third scenario, the algorithm is tested in a 

search space with three isotropic sources S1, S2 and 

S3 at corresponding positions of (-10, 0), (30, 20) and 

(20 -20). The intensity of S2 is a half that of S1 and a 

third that of S3. Four cylindrical obstacles are placed 

at (-30, -10), (-10, -30), (-20, 30) and (10, 20) (Figure 

3). 

 
Figure 4. Scenario 4 – Obstacles of varied shapes and sizes 

 

For the last scenario, we evaluate the modified 

algorithm’s ability to avoid obstacles of diverse 

shapes and sizes. Light source used in this scenario is 

a single isotropic source. Three cylindrical obstacles 

are placed at (-30, -30), (-20, 30), and (30, 20). There 

are also three prismatic obstacles in the search space, 

including a triangular prism and two rectangular 

prisms. The triangular obstacle is placed vertically at 

(15, 4.33). Its base is an equilateral triangle with each 

size being 10. Two rectangular obstacles are placed at 

(-17.5, -5) and (-5, -22.5), their base dimensions are 

5×10 and 10×5, respectively. 

 

 
Figure 5. Initial Deployment with 15 robots 

 

A completely arbitrary initial deployment of the 

swarm may allow for the possibility of premature 

convergence or local optima stagnation. To avoid 

such situations, the swarm is arranged uniformly in 

the initial step, so that population density just varies 

slightly across search space.  Such commencing 

deployments yield a success rate of 100% in the 

simulations. The deployment demonstrated in Figure 

5 has the desired property, with the distances from a 

robot to its neighbors differ slightly. 

In Figure 5, the violet circles represent static 

obstacles. Each robot is a blue circle with a green 

circle outside delineating its repulsive region. At final 

steps, the swarm converges around the global 

maximum. The contours demonstrate illuminance on 

the search space. Figure 6 shows the typical final 

arrangement of the swarm in a simulation: 

 

 
Figure 6. Typical final deployment of MRS 
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Figure 7. Trajectories of swarm robots 

 

The modified PSO algorithm presented in this 

research is a combination of APF and PSO, thus it has 

the advantages and also the disadvantages of APF. 

The robots controlled by the algorithm are incapable 

of escaping from local minima entrapment. Such 

situations are likely to occur in the presence of 

specially-shaped obstacles (e.g. U-shaped or V-

shaped obstacles) or when an obstacle is too large, 

compared to the dimensions of the search space and 

sensing range of a robot.  

The applicability of this modified algorithm is 

confined to the situations in which obstacles are 

simple (i.e. perceived by robots as polygons or 

circles) and their sizes are not too large. In such 

situations, simulations show that the swarm robots 

controlled by the algorithm can successfully avoid 

obstacles while heading towards their target. Figure 7 

depicts trajectories of three robots during the 

exploration. 

As the exploration of this swarm progresses, the 

robots move towards global best position. Thus, 

average value of illuminance at positions of the robots 

(the blue line in Figure 8) increases. Although the best 

position is discovered at as early as step 50, the 

average value does not approach highest value even in 

last steps. This is because after the swarm converges, 

some robots are in the repulsive region of others and 

unable to get closer to the global best position, while 

the objective function is quite steep.  

 
Figure 8. Searching Performance 

 

Since the modified PSO is a stochastic algorithm, we 

run each simulation for numerous times and present 

the relevant statistics in the following tables. The data 

of interest are the steps at which the swarm converges 

in each run (step of convergence – SC). Each specific 

case is run 100 times. 

It can be deduced from the tables that average step of 

convergence and population size do not stand in a 

monotonic relationship. Thus, an increase in the 

number of robots does not always result in a decrease 

in average step of convergence, as normally expected. 

However, a common pattern can be observed in these 

data sets: average step of convergence increases and 

then decreases as the number of robots increases from 

5 to 15. In future researches, we will go deeper into 

this point and build a model for the relationship 

between these two quantities to figure out the optimal 

number of robots for specific explorations. 

In general, more optima requires more iterations for 

the swarm to converge. By comparing results given in 

Table 1 and Table 4, we can deduce that the impact of 

obstacles’ shape on the overall performance of an 

MRS in the process of exploring and detecting light 

sources is not considerable. The standard deviation of 

step of convergence fluctuates around ten percent of 

average step of convergence throughout specific 

cases. This high standard deviation substantiates the 

impact of random factors in this algorithm. However, 

despite of its stochastic nature, this algorithm 

guarantees the swarm’s ability to avoid obstacles and 

claims perfect success rate in the simulations for 

detection of ideal light sources using MRS. 

 

Number of 

robots 

Average SC Standard 

deviation of 

SC 

5 69.19 5.19 

10 74.32 5.62 

15 55.14 6.32 
Table 1. Searching performance in scenario 1 
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Number of 

robots 

Average SC Standard 

deviation of 

SC 

5 116.82 9.08 

10 162.47 13.62 

15 155.35 16.67 
Table 2. Searching performance in scenario 2 

 

Number of 

robots 

Average SC Standard 

deviation of 

SC 

5 136.91 16.32 

10 151.72 18.33 

15 121.43 16.87 
Table 3: Searching performance in scenario 3 

 

Number of 

robots 

Average SC Standard 

deviation of 

SC 

5 69.92 5.12 

10 75.23 5.68 

15 62.12 8.09 
Table 4: Searching performance in scenario 4 

 

 

4. Conclusions and future work 
In this paper a modified PSO algorithm with the 

integration of APF for an MRS to explore unknown 

environments and detect light sources is developed 

and evaluated. The features presented and discussed 

in previous sections have been implemented in Matlab 

and experimental results showed good performance of 

the algorithm. With the success rate being 100% and 

ability to avoid obstacles, this modified algorithm is a 

promising resolution for some practical problems 

involving the utilization of  MRS and optical 

applications, such as dynamic deployment of robotic 

systems, flame detection or optical wireless charging. 

Nevertheless, there exist some drawbacks in this 

algorithm that we need to overcome to make it a 

pragmatic approach to real-world problems, such as 

the inability to detect multiple sources (currently this 

algorithm is only effective to find global optimum) or 

the dependence upon random factors (that leads to 

high standard deviation of SC). This algorithm also 

needs to be modified to cope with the problem of 

local optima entrapment.  

In future researches, apart from improving the overall 

performance of this algorithm, we will focus on 

determining optimal swarm population for specific 

types of problems, detecting multiple sources, 

carrying out simulation with real light sources and 

finally applying the algorithm on real MRSs. 
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