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Ban vé hé thong tuyén tinh cé cau tric va bai toan loai bé nhieu

Discussion of linear structured system and the disturbance rejection
problem
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Tom tat

Bai bdo nay dé cap dén moé hinh hé thdng tuyén tinh
¢6 chu trac va ung dung trong nghién ciru loai bo
nhiéu bang phan hoi trang thai hodc bang phan hoi tin
hiéu do. Cac diéu kién can va du cho viéc kiém tra
kha ning loai bo nhidu bang phan hdi trang thai hoic
bang phan hdi tin hiéu do dugc d& xuét. Khi bai toan
loai bo nhiéu bang phan hdi dau do khong kha thi,
chiing t6i nghién ctru bai toan xéc dinh s6 lwong cam
bién can thém vao va trang thai can do dé bai toan
loai bé nhiu bang phan héi dau do tré nén kha thi.
Céc phan tich va két qua trong bai bao duogc thé hién
trong khudn kho hé thong tuyén tinh ¢ cau tric.

Tir khéa: Hé thong tuyén tinh ¢ ciu trac, dic tinh
chung, xac dinh vi tri cam bién, loai bo nhidu.

Abstract: In this paper we present the structured
linear system and revisit the exact disturbance
rejection problem in a structural framework.
Necessary and sufficient conditions are proposed for
the solvability of the Disturbance Rejection by State
Feedback (DRSF) problem and the Disturbance
Rejection by Measurement Feedback (DRMF)
problem. The associated system graph can be used to
easily check whether or not the conditions hold. When
the DRMF problem is not solvable, we investigate
how many sensors are needed and where should they
be located to make this problem solvable. Our
analysis is performed in the context of structured
systems which represent a large class of parameter
dependent linear systems. This structured system
gives us more understanding of the system.
Keywords: Linear structured systems, structural
properties, sensor location, disturbance rejection.

Chir viet tat

DRSF disturbance rejection by state feedback

DRMF disturbance rejection by measurement
feedback

1. Introduction
We consider here linear structured systems which
represent a large class of parameter dependent linear
systems. Generic properties for such systems can be
obtained easily from a graph naturally associated with
the systems. This approach was pioneered by Lin [6].
In this framework, the DRMF problem has been
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solved via a graph approach in [7], [8]. It is clear that
the solvability of this problem highly relies on the
sensor network. Sensor location has already been
studied in a structural framework for two other
problems, the observability in [9], [10], [11] and the
Fault Detection and Isolation problem in [12], [13].
Dynamic systems are often affected by unmeasurable
disturbances. It is important that some system
performances are still performed in the presence of
disturbances. Control of physical systems must take
into account the existence of disturbances and
possibly reject their effect. This paper is concerned
with a classical problem of the control theory of linear
systems, called the exact disturbance rejection
problem (i.e. a zero disturbance-regulated output
transfer matrix). To eliminate the influence of
disturbances on the regulated output of the system, it
is necessary to have information on disturbances and
their effect on system. Normally, this information is
obtained from measurements (using sensors). In the
case where all states are measurable, we have the
problem of disturbance rejection by state feedback.
Otherwise, there is the problem of disturbance
rejection by measurement feedback. Other approaches
allow to stabilize and minimize some norm of
disturbance-regulated output transfer matrix, see for
example [1]. The problem of disturbance rejection by
state feedback is a very well known problem [2], [3].
In the case where the state is not available for
measurement, the problem is more complex. The
problem of disturbance rejection by measurement
feedback has been solved in an elegant way in
geometric terms, see [4], [5].

In this paper we present the structured linear system
and revisit the disturbance rejection problem (by state
feedback and by measurement feedback) in the
context of linear system and then of linear structured
system. Necessary and sufficient conditions for the
problem has a solution are presented. In the DRMF
problem, we prove that the problem reduces to an
unknown input observer problem on a subset of the
state space. This subset consists of the states for
which a disturbance affecting directly theses states
can be rejected by state feedback. The observation
problem amounts to estimate the disturbance effect
before it leaves this subset. This allows to explain
why we need to measure a sufficient number of state
variables early enough to be able to estimate the
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disturbance effect and compensate for it via the
control input. Consequently, we give the minimal
number of sensors to be implemented for solving the
DRMF problem. We showed also that the sensors
measuring only states out of a given subset are useless
for solving the DRMF problem. Our analysis comes
within the context of structured systems which
represent a large class of linear systems. The generic
results are obtained directly from the system
associated graph.

The outline of this paper is as follows. We formulate
the problem of disturbance rejection in section 2. The
linear structured systems are presented in section 3 as
well as the known structural results on the DRSF
problem and the DRMF problem. The sensor location
problem is considered in section 4: we give the
minimal number of sensors for solving the DRMF
problem and characterize an important set of useless
sensors. An illustrative example is given in section 5.
Some concluding remarks end the paper.

2. Disturbance Rejection Problem
2.1 Disturbance rejection by state feedback
We consider the linear system S given by:

f)&t): AXx(t) + Bu(t) + Ed(t)
Fy(® = Cx()
where x(t)1 ; "is the state, u(t)i ; ™ is the control
input, d(t)T ; “is the disturbance, y(t)i ; * is the
regulated output.
The problem of disturbance rejection by state

feedback amounts to find a state feedback of the form
u(t) = Fx(t) such that in closed loop the disturbances

will have no effect on the regulated output:
C(sl- A- BF)Y'E=0 2

M

2.2 Disturbance
feedback

When not all the state can be measurable, we have the
DRMF problem. Consider the linear systemS? given
by:

rejection by measurement

i)&t): Ax(t) + Bu(t) + Ed(t)
S*Ly(t)= Cx(t) ®)
z(t) = Hx(t)

m

where u(t)I ; ™ is the control input, d(t)1 ; ¢ isthe

disturbance, x(t)I ; " is the state, y(t)T ; ® is the

regulated output and z(t)f ;" is the measured

output provided by a sensor network.
For such a system, we have the transfer matrix:

y(s)y G K(s)uu(s)t
(S)u: (s) (s)um(s)u 4
g M(s) N()R(s)Y
The problem of disturbance rejection amounts to find
a dynamic measured output feedback compensator

Jwit) = Lw(t) + Rz(t)

“Eu(t)= Sw(t)+ Pz(t) ©)
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such that in closed loop the disturbances will have no
effect on the regulated output.
Disturbance Controlled output
L Y(t)

dff) ——»
Conftrol input SyStem Measured output
uft) & z(Y)

Compensator |«

H.1 Control by dynamic feedback compensation

In transfer matrix terms, we look for a dynamic
compensator (see H. 1) u(s) = F(s)z(s), where F(s) isa
proper rational matrix, such that the closed loop
system transfer matrix from disturbance d to
controlled output y is identically zero:

G(S)F(S)(I- M(s)F(s)) *N(s)+ K(s)= 0 (6)
This problem received a very elegant solution in
geometric terms, see [4]. A geometric necessary and
sufficient condition for the solvability of the
disturbance rejection by measurement feedback
problem is:

h"i J” @)
whereh”is the minimal (H,A)-invariant subspace

containing ImE and J” is the maximal (A,B)-invariant
subspace contained in KerC.

In the following, we revisit the disturbance rejection
problem in a structural way. In the case of DRMF, we
give some understandings and useful information on
the minimal number of sensors to be implemented and
on their possible location.

3. Linear structured system
3.1 Definitions
In this subsection we recall some definitions and
results on linear structured systems. More details can
be found in [14].
We consider linear systems of type (1) with
parameterized entries and denoted by S as follows:

PR)= A x(t)+ BLu(t)+ E d(t)
S Ll (8)
ty(® = C.x()
This system is called a linear structured system if the

. . . S B Eu
entries of the composite matrix J, = N8By
& 0 04

are either fixed zeros or independent parameters (not
related by algebraic equations). L={,1,,...1 }

denotes the set of independent parameters of the
composite matrix J, .

For such systems, one can study generic properties,
i.e. properties which are true for almost all values of
the parameters collected in A [15]. More precisely, a
property is said to be generic (or structural) if it is true
for all values of the parameters outside a proper
algebraic variety of the parameter space.
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A directed graph G(S,)= (V,W) can be associated

with the structured system of type (8):

o the vertex setis V=UEDEXEY where U, D,
X, and Y are the input, disturbance, state and
regulated output sets given by

fuy v 1 dy o d oK X%, and

{yl, Yoreens yp} respectively,
e the set is

W:{(ui,xj)(ls_;ulC ofu {(e.x)E ;' oju
{(xi,xJ.XALYH1 O}U{(xi,ijCLyji1 0} where

A ji(resp. B_;,E_;,C_;) denotes the entry
(j,i) of the matrix A (resp. B, E, , C,)
Let V,,V, be two nonempty subsets of the vertex set
V of the graph G(S, ).We say that there exists a path
from V, to V, if there are vertices iy,i,...,i, such that
ip I V,,i, TV,,iIVfort=001,..rand(,_,i)I W

v r
for t=1,2,..,.r. We call the path simple if every
vertex on the path occurs only once. Two paths from

V, to V, are said to be disjoint if they consist of
disjoint sets of vertices. r paths from V, to V, are

said to be disjoint if they are mutually disjoint, i.e.
any two of them are disjoint. A set of r disjoint and
simple paths from V, to V, is called a linking from V,

to V, of sizer.

Example 1: Consider the following example of a
structured system whose matrices of Equation (8) are
the following:

€0 0 1, ¢,u ¢ .U
=§, o olB =%UE =0
A=t vt eyt ey
0 01 of g} o

¢. 0 OU

C =g’ U

86 |7 03

The associated graph G(S,) is depicted in H. 2. In
this example, there is only one D - Y path: (d;, X, ;)
then the maximal size of a D — Y linking is one.

r

d, - O s

u: o >OW
o

H.2 Directed graph G(S, )of Example 1

3.2 Disturbance rejection by state feedback for
structured system
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In order to solve the disturbance rejection problem in
the context of structured systems, we will define the
first important sets of vertices in the graph G(S ) .

Definition 1: Consider S, a structured system of
type (8) with associated graph G(S, ). Let us define
the vertex set 1" as follows:

I"= {x 1 X | the maximal size of a linking in
G, )from UE{x}to Y is the same as the

maximal size of a linking in G(S,) fromU to Y,
and the minimal number of vertices in X EU is the
same for both such maximal linkings} .

The set | corresponds to the states for which an
unmeasurable disturbance affecting directly these
states can be rejected by state feedback [8]. Notice

that |” can be computed independently of the sensor
network since its computation involves uniquely the
matrices A, B_ and C, in (8).

With the definition of I ", the solubility of the DRSF
problem was graphically characterized in [8]:

Theorem 1: Consider S, a structured system of type
(8) with associated graphG(S,). The problem of

disturbance rejection by state feedback is generically
solvable if and only if the disturbances affect only

state vertices of 1", i.e. forany (d;,x;)T W,x, 117
From the definitions of ", checking condition in
Theorem 1 amounts to compute in G(S,) some

maximal linkings with minimal number of vertices.
This can be done using standard algorithms of
combinatorial optimization as max-flow min-cost
techniques [16], [17]. This means that for a given
sensor network, the solvability of the DRSF problem
can be checked in polynomial time.

Return to the structured system in Example 1 with the
directed graph G(S, ) presented in H. 2. The vertex

set I” can be calculated due to Definition 1. The
maximal size of a linking from U to Y is 1 and the
minimal number of vertices in X EU in such a
linking is 2, for example the path (linking of size 1)

(U ¥)-

A maximal linking from U E{x }to Y is of size 1 but
the minimal number of vertices in X EU in such a
linking is 1, for example the linking(x,V,).
Thenx 1 17.

A maximal linking from U E{x,} to Y is of size 2
with the linking (U, %, ), (X,,Y,). Thenx, T 17,
The state vertex x, I 1" since a maximal linking from
U E{xs}to Y is of size 1 and the minimal number of
vertices in X EU in such a linking is 2.
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We obtain 1" = {x, }. The disturbance d, arrives on

state vertex x, I 1" then by Theorem 1, the problem

of disturbance rejection by state feedback is
generically not soluble.

3.3 Disturbance rejection
feedback for structured system

by measurement

The linear system of the form (3) can be redefined in
structured context. Consider linear systems of type (3)

with parameterized entries and denoted by S| as
follows:
%)&t)= AX(t)+ BLu(t)+ E d(t)
SLiy() = Cox(t) ©)
z(t) = Hox(t)
This system is called a linear structured system if the

entries of the composite matrix J; = %:L 0 04y
Hoo 0y

are either fixed zeros or independent parameters (not
related by algebraic equations). L={,1,,..1}

denotes the set of independent parameters of the
composite matrix J, .

For this linear structured system, we can associate a

directed graph G(S;)= (V4W4 in the same manner

as the directed graph G(S,)= (V,W) in section 3.1,

i.e.

o the vertex set V¢=VEZwhere Z is the
measured output set given by {z,,2,,....z, },

e the arc set is W¢=WEW,,
Wy, ={(x;, z))IH 3 * O},H_; denotes the
entry (j,i) of the matrix H, .

where

Note that the determination of 1”from Definition 1
depends only on the matricesA , B, andC_.

Therefore, the vertex set 17 in G(S{) is the same as

in G(S,) . Recall that |I” characterizes the states for

which an unmeasurable disturbance affecting directly
these states can be rejected by state feedback.

A condition for the DRMF problem is derived in [8].
However, this condition does not provide much
information on the solvability of the DRMF problem
with respect to the possible location of sensors. It
means, when the problem of DRMF is not soluble,
where and how many new sensors can be added such
that this problem becomes soluble. Therefore, in [18]
we revisited this problem and gave alternative
necessary and sufficient solvability condition. This
condition will give new insight into the problem and
provide with useful information on the number and
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the location of the sensors to be implemented. Let us
give first some definitions.

Definition 2: Consider S| a structured system of
type (9) with associated graph G(S| ) . Define F. , the

frontier of 17, as the set of vertices
Fo={6T SO x) T Wex; I 1'}

The set F. contains the vertices of 1" which have at

least one successor outside of |”. Practically, the
frontier F,. connects the vertices of 1~ with the state

vertices which are outside of 1”. If the disturbance
affects a vertex in 1”, the effect of the disturbance
will propagate firstly in 1" and then must go through
F - before going out of 1" .

Definition 3: Consider S| a structured system of
type (9) with associated graphG(S;). For a
disturbance d; which affects at least one vertex in |,
denote r; (resp. I1(d;,x;)) the length of a shortest path

from d; to F,.(resp. from d toxji I”) where the

length of a path is the number of arcs it is composed
of. Define D, the set of vertices:

D,={x 1 1"[0<I(d;,x)£ r}

(R
We call this set the disc associated with the

disturbance d; .
In fact, when a disturbance d, affects a vertex inl”,

its effect will propagate outside|™. The set D,
defined above contains the states that have been
affected by the disturbance d; when the effect of this
disturbance reaches the frontier F.

In the following theorem we give a new insight into
the DRMF problem and prove that it is sufficient to
study this problem on a part of the state space [18].

Theorem 2: Consider S| a structured system of type

(9) with associated graph G(S|) and affected by the

disturbances d,,....,d,. The DRMF problem is

generically solvable if and only if:

e d,..,d,, affect only state vertices of 1", i.e. for
any(di,xj)i we x I 17

e The maximal size of a linking in G(S{) from D
to Z is the same as the maximal size of a linking
in G(S{) from D toZEF., and the minimal
number of vertices in X is the same for both such
maximal linkings.

Interpretation:

Since the first condition is a necessary and sufficient

condition for the solvability of the DRSF [8], it is

necessary also for DRMF problem. The second
condition corresponds, in graphic terms and within
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our framework, to an Unknown Input Observer
problem [3], [19]. The condition expresses the fact
that it is possible to estimate the effect of the
disturbances at F,.from the measurements without

the knowledge of the disturbances. It is a natural
condition since when the effect of the disturbances at
F.cannot be estimated from the available
measurements, the unknown effect of a disturbance
on F,. will propagate out of I " and cannot be rejected

by state feedback and consequently by measurement
feedback. The first part of the condition is a rank
condition. When it is not satisfied, we therefore need
more sensors to solve the problem. The second part of
the condition, when not satisfied, means that the
sensors give information on the disturbance too late.

4. Sensor location for the disturbance

rejection by measurement feedback
In this section we will examine the consequences of
Theorem 2 on the possible sensor location for solving
the disturbance rejection by measurement feedback
problem. The first result shows that it is useless to

measure variables outside |~ .
Proposition 1: Consider S| a structured system of

type (9) with associated graph G(S/). Assume that
the DRMF problem is generically solvable. A sensor
z; 1 Z such that for any (x,z,)T W¢, x T X \17 (ie.
z; measures only states out of 1") is of no use for
solving the DRMF problem.

State now a result giving the minimal number of
sensors to be implemented [18].

Proposition 2: Consider S| a structured system of

type (9) with associated graph G(S|) . The problem

of DRMF is generically solvable only if the number
of sensors is greater than or equal to the maximal size

of alinking fromDto F. in G(S7) .

The following result shows that it is necessary to have
a measurement in each disc D, associated with

disturbance d, . Remark that one measurement can be
valid for several discs.

Proposition 3: Consider S| a structured system of
type (9) with associated graph G(S[) . The problem
of DRMF is generically solvable only if for any D, ,
i=12,..,q, there exists X' I D, and z'1 Z such
that the arc (x',z°)1 W¢.

The following theorem proves that measuring states

of 1" sufficiently close to the disturbances and in a
decoupled manner is sufficient to solve the DRMF
problem.
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Proposition 4: Consider S| a structured system of

type (9) with associated graph G(S;) and affected
by the disturbancesd,,....,d,. Assume that the
disturbances affect only state vertices of 1", i.e. for
any (d;,x; )T W¢,x; I 1”. Then the DRMF problem is

generically solvable if in G(S ) there exists a linking
of size g from D to q vertices of Z i.e. (d,,....,Z,),

(dgyeiesZ5) yovey (dgseens Zig) sUCh that:

e (dj,...,z;) is a shortest path from
d;(j=1..,q) to Z

e the number of state vertices in the path

(dj,....,zij) is lower than or equal to r;, the

number of state vertices in a shortest path from
d;to F..

5. Disturbance rejection for a thermal

process
5.1 The system
Consider the thermal process described in H.3.

T, T
R F
7 Ts
l F+F, F. l
LE ST w Ts
T T
Fo+F. [ | F
Ts
V2R,

H.3  The system made up of 5 tanks

This process consists of five tanks such that each tank
is fed by a fixed water flow: (F + F,)for tank 1 and

3, F, for tanks 2 and 4, (F + 2F,)for tank 5. The
system control input is the heating powerW . The
regulated output is T, the temperature of the fifth
tank. The disturbances are the variations of feed flow
temperatures T, and T. . The objective is to
determine a dynamic measured output feedback such
that Ty is not sensitive to the variations of T. and
Te .

This process can be linearized around a given
operating point as a system of the type defined by (1)
where

x=[PT, DT, DT, DT, DT,J .u=DwW
d= 1. DT U y=DT,

and the state matrices
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¢ c1 0
g F U
§ 0 'CZ 0 0 0 4
& 2 llp]'

A:§(F1+F2) 0 (R+F) 0 3
s - :
§ 0 a3 0 P 0
g G C !
g 0 0 (F1+ Fz) i B (F1+ ZFz)llj]l
g C, C c, U
§0 0 &IC RICY
€0 U €0 FI/CU

2= e, e- | :

% Bl DO
¢ 0y ¢ 0 0y
¢ ¢
§0¢§ §oO 0 g

= 0 0 0 1]

C, is the heat capacity of the i tank.

This model clearly exhibits the physical structure of
the process. Note that this model is not exactly
structured as in Section 3 since some dependencies
exist between the matrix entries. Nevertheless, in
order to illustrate the approach, we will consider a
structured system of the form defined by equations (8)
that has the same zero/nonzero structure as the
physical system with the following matrices:

4, 0 0 0 0y  ¢é0y ‘
L T
€© I, 0 0 o0 ¢ou €0 1,0
g yooo¢ruy ¢ Bu
A=%, 0 1, 0 ofB=4,0E=% o}
%o I, 0 I, 0§ %og %o 0y
€0 0 1, I, l,g §0fd §0 oY

c=p oo 0 I,]

The associated graph of this structured system is
depicted in H. 4. Note that this system is not
controllable since the state verticesx, , x, and x, are

not relied to the input vertexu .

H.4  The system made up of 5 tanks

5.2 The solvability of the disturbance rejection
From Definition 1, we obtain 1™ = {x,x,}. We can
verify on the associated graph in H. 4 that the
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disturbances affect directly only state vertices of 1.
According to Theorem 1, the problem of DRSF
generically solvable.

We will now study the sensor location problem for the
DRMF. From Definition 2 and Definition 3, we have

the frontier F. = {x,, X}, the disc associated with the
disturbanced, is D, = {x} and the disc associated
with the disturbance d, is D, = {x,,X,}.

By Proposition 1, the sensors which measure only
vertices x;, X, and X5 , i.e. which measure only outside

| " are useless for the solubility of the DRMF.
A maximal linking from D to F,.corresponds to

{(d,,x),(d,, x,)}which is of size 2. From Proposition

2, one needs at least two sensors to reject the
disturbance by measurement feedback. Moreover, by
Proposition 3 there must be at least one measure in

each disc D, = {x} and D, = {x,X,}. With z, and
z, as shown in H. 5, we satisfy the conditions of
Proposition 4 and the DRMF problem is solvable.
With these measurements, we obtain:

¢, 0 0O Og

H = ¢ ,
Y &0 1, 0 0 oY

d d;

H.5 Graph of the five-tank system with measurements
Indeed, it turns out that on this model, the
measurement of x, and x, provides early information
on the disturbances that allows us to compensate in
time with u the effect of these disturbances on the
regulated output y.

5.3 Calculation of the dynamic measured output
feedback compensator
Here, the matrices in (4) are:

I 7I 1OI 14

GL(S):m L()_g)g
% I3I 7I lll 14 ]l;l-{
KL(S)= § (S_ Il)(s' |4)(S- |9) lli
§ 1w Ll ol S I I )3
gS- Ig) (s- 1)(s-1,) (s-1,)(s-1¢) a
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§.|11|15 I12|15 E]
Qs- | s-1,)y
N (s):g( ) 1)19
- & I 0, Y
€ 0 1316
% (S- Iz)ﬁ

Therefore in this example, equation (6) can be
reduced to:
GLS)FL (SN () + K ()= 0

; é' |3 AQ’]
We then obtain F,_(s) = & E Y
810|15 I7 ol 16 6%
- 1 (.- 1)
Let glz 3 192: 5" 8 ,gs 4
IlO 15 I7I 10' 16 I7I 1OI 16

then we can get the following realization for the
dynamic measured output feedback compensator:

1v€€t)—lew(t)+[0 o
, (DY

Sl ()u
1u(t) = w(t)+ [g, gz]gi(t)u

The results regarding solvability of the DRMF
problem only guarantee that the transfer from the
disturbance to the regulated output is null but do not
take into consideration the stability issues. That is
why this approach needs further analysis to be applied
in practice. With the above compensator, we have the
dynamic matrix of the closed loop system with

extended state X, (t) = 9‘()
u(t)!
g’ I, 0 0 0 O 03
g 0 l, 0 0 O 03
AfL:gl3+|1ogl) |1ogz I4 0 0 ImE
£ 0 ls 0 1g 0 0y
£ 0 0 1, Iy 1y 0}
§ 0 g 0 0 0 I

The characteristic polynomial of the closed loop
system is:

det(sl -
Since 1,,1,,1,,14,1 are negative by nature, i.e. for

any positive value of the physical parameters, the
closed loop system is stable.

5.4 Simulation results

We will now test the system using the following

physical values:

e All the tanks volumes are 5l which leads to a heat
capacity of 20.93JK ™,

e Theflowratesare F;=F,=0.11/s

e The feed flow temperatures are T, = 20+ 5°C

and T, = 60+ 5°C.

e Our set point corresponds to a temperature of
Ts=50°C  with two feed flows at
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AT)= (- 1)(s- 1,)(s- 1,)(s- To)(s- 16)°

T = 20°C, T, = 60°C , which implies a heating

power of u = 4.186kW.
Our aim is to maintain the output temperature at
Ts=50°C for any variation of the feed flow
temperatures T, and T . H.6 shows step disturbances

on the temperature feed flows and the open-loop
effect on the regulated output. H.7 shows the
behaviour of the closed loop system with the DRMF
controller.

6. Concluding remarks

In this paper we revisited the disturbance rejection
problem in a structural way. We gave some
understandings and useful information about this
topic. The necessary and sufficient conditions for the
problem to be solvable were given. In the DRMF
case, we showed that the problem reduces to an
unknown input observer problem on a subset of the
state space. This structural result allowed us to study
the DRMF problem irrespective of the sensors
network and then to determine the minimal number of
sensors to be implemented and to show that it is
useless for the problem to measure states in some
region of the state space. Finally, we provided with a
constructive sensor network configuration which
solves the DRMF problem. This last result is useful in
practice for a sensor network design but remains only
sufficient.

Withoat disturbance rejection

F
) i j

Temperature *C

0 S04 1000 1500 2000 2500 X 350x
Time (8)

H.6 Temperature of feed flows and regulated output
without measurement feedback

With disturbance rejection

) |

Temperatize

0 S 100 | 500 2000 2500 3000 3500
Time (s)

H.7 Temperature of feed flows and regulated output with
measurement feedback
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