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Tóm tắt 
Bài báo này đề cập đến mô hình hệ thống tuyến tính 

có cấu trúc và ứng dụng trong nghiên cứu loại bỏ 

nhiễu bằng phản hồi trạng thái hoặc bằng phản hồi tín 

hiệu đo. Các điều kiện cần và đủ cho việc kiểm tra 

khả năng loại bỏ nhiễu bằng phản hồi trạng thái hoặc 

bằng phản hồi tín hiệu đo được đề xuất. Khi bài toán 

loại bỏ nhiễu bằng phản hồi đầu đo không khả thi, 

chúng tôi nghiên cứu bài toán xác định số lượng cảm 

biến cần thêm vào và trạng thái cần đo để bài toán 

loại bỏ nhiễu bằng phản hồi đầu đo trở nên khả thi. 

Các phân tích và kết quả trong bài báo được thể hiện 

trong khuôn khổ hệ thống tuyến tính có cấu trúc. 

Từ khóa: Hệ thống tuyến tính có cấu trúc,  đặc tính 

chung, xác định vị trí cảm biến, loại bỏ nhiễu. 

 

Abstract: In this paper we present the structured 

linear system and revisit the exact disturbance 

rejection problem in a structural framework. 

Necessary and sufficient conditions are proposed for 

the solvability of the Disturbance Rejection by State 

Feedback (DRSF) problem and the Disturbance 

Rejection by Measurement Feedback (DRMF) 

problem. The associated system graph can be used to 

easily check whether or not the conditions hold. When 

the DRMF problem is not solvable, we investigate 

how many sensors are needed and where should they 

be located to make this problem solvable. Our 

analysis is performed in the context of structured 

systems which represent a large class of parameter 

dependent linear systems. This structured system 

gives us more understanding of the system. 

Keywords: Linear structured systems, structural 

properties, sensor location, disturbance rejection. 
 

Chữ viết tắt 
DRSF disturbance rejection by state feedback 

DRMF disturbance rejection by measurement 

feedback 

 

1. Introduction 
We consider here linear structured systems which 

represent a large class of parameter dependent linear 

systems. Generic properties for such systems can be 

obtained easily from a graph naturally associated with 

the systems. This approach was pioneered by Lin [6]. 

In this framework, the DRMF problem has been 

solved via a graph approach in [7], [8]. It is clear that 

the solvability of this problem highly relies on the 

sensor network. Sensor location has already been 

studied in a structural framework for two other 

problems, the observability in [9], [10], [11] and the 

Fault Detection and Isolation problem in [12], [13]. 

Dynamic systems are often affected by unmeasurable 

disturbances. It is important that some system 

performances are still performed in the presence of 

disturbances. Control of physical systems must take 

into account the existence of disturbances and 

possibly reject their effect. This paper is concerned 

with a classical problem of the control theory of linear 

systems, called the exact disturbance rejection 

problem (i.e. a zero disturbance-regulated output 

transfer matrix). To eliminate the influence of 

disturbances on the regulated output of the system, it 

is necessary to have information on disturbances and 

their effect on system. Normally, this information is 

obtained from measurements (using sensors). In the 

case where all states are measurable, we have the 

problem of disturbance rejection by state feedback. 

Otherwise, there is the problem of disturbance 

rejection by measurement feedback. Other approaches 

allow to stabilize and minimize some norm of 

disturbance-regulated output transfer matrix, see for 

example [1]. The problem of disturbance rejection by 

state feedback is a very well known problem [2], [3]. 

In the case where the state is not available for 

measurement, the problem is more complex. The 

problem of disturbance rejection by measurement 

feedback has been solved in an elegant way in 

geometric terms, see [4], [5]. 

In this paper we present the structured linear system 

and revisit the disturbance rejection problem (by state 

feedback and by measurement feedback) in the 

context of linear system and then of linear structured 

system. Necessary and sufficient conditions for the 

problem has a solution are presented. In the DRMF 

problem, we prove that the problem reduces to an 

unknown input observer problem on a subset of the 

state space. This subset consists of the states for 

which a disturbance affecting directly theses states 

can be rejected by state feedback. The observation 

problem amounts to estimate the disturbance effect 

before it leaves this subset. This allows to explain 

why we need to measure a sufficient number of state 

variables early enough to be able to estimate the 
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disturbance effect and compensate for it via the 

control input. Consequently, we give the minimal 

number of sensors to be implemented for solving the 

DRMF problem. We showed also that the sensors 

measuring only states out of a given subset are useless 

for solving the DRMF problem. Our analysis comes 

within the context of structured systems which 

represent a large class of linear systems. The generic 

results are obtained directly from the system 

associated graph.  

The outline of this paper is as follows. We formulate 

the problem of disturbance rejection in section 2. The 

linear structured systems are presented in section 3 as 

well as the known structural results on the DRSF 

problem and the DRMF problem. The sensor location 

problem is considered in section 4: we give the 

minimal number of sensors for solving the DRMF 

problem and characterize an important set of useless 

sensors. An illustrative example is given in section 5. 

Some concluding remarks end the paper. 

 

2. Disturbance Rejection Problem 
2.1 Disturbance rejection by state feedback 

We consider the linear system S given by: 

 
( ) ( ) ( ) ( )

( ) ( )

x t Ax t Bu t Ed t

y t Cx t

í = + +ïïS ì
ï =ïî

&
 (1) 

where ( ) nx t Î ¡ is the state, ( ) mu t Î ¡  is the control 

input, ( ) qd t Î ¡ is the disturbance, ( ) py t Î ¡  is the 

regulated output. 

The problem of disturbance rejection by state 

feedback amounts to find a state feedback of the form 

( ) ( )u t Fx t= such that in closed loop the disturbances 

will have no effect on the regulated output: 

 1( ) 0C sI A BF E-- - =  (2) 

 

2.2 Disturbance rejection by measurement 

feedback 

When not all the state can be measurable, we have the 

DRMF problem. Consider the linear system zS given 

by: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

z

x t Ax t Bu t Ed t

y t Cx t

z t Hx t

í = + +ïïïïS =ì
ïïï =ïî

&

 (3) 

where ( ) mu t Î ¡  is the control input, ( ) qd t Î ¡  is the 

disturbance, ( ) nx t Î ¡  is the state, ( ) py t Î ¡  is the 

regulated output and ( )z t nÎ ¡  is the measured 

output provided by a sensor network. 

For such a system, we have the transfer matrix: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

y s G s K s u s

z s M s N s d s

é ù é ùé ù
ê ú ê úê ú=
ê ú ê úê ú
ë û ë ûë û

 (4) 

The problem of disturbance rejection amounts to find 

a dynamic measured output feedback compensator 

 
( ) ( ) ( )

( ) ( ) ( )
zu

t L t Rz t

u t S t Pz t

w w

w

í = +ïïS ì
ï = +ïî

&
 (5) 

such that in closed loop the disturbances will have no 

effect on the regulated output. 

 

 
H. 1 Control by dynamic feedback compensation 

 

In transfer matrix terms, we look for a dynamic 

compensator (see H. 1) u(s) = F(s)z(s), where F(s) is a 

proper rational matrix, such that the closed loop 

system transfer matrix from disturbance d to 

controlled output y is identically zero: 

 1( ) ( )( ( ) ( )) ( ) ( ) 0G s F s I M s F s N s K s-- + =  (6) 

This problem received a very elegant solution in 

geometric terms, see [4]. A geometric necessary and 

sufficient condition for the solvability of the 

disturbance rejection by measurement feedback 

problem is: 

 h J* *Ð  (7) 

where h* is the minimal (H,A)-invariant subspace 

containing ImE and J * is the maximal (A,B)-invariant 

subspace contained in KerC. 

In the following, we revisit the disturbance rejection 

problem in a structural way. In the case of DRMF, we 

give some understandings and useful information on 

the minimal number of sensors to be implemented and 

on their possible location. 

 

3. Linear structured system 
3.1 Definitions 

In this subsection we recall some definitions and 

results on linear structured systems. More details can 

be found in [14].  

We consider linear systems of type (1) with 

parameterized entries and denoted by LS as follows: 

 
( ) ( ) ( ) ( )

( ) ( )

x t A x t B u t E d t

y t C x t

L L L

L

L

í = + +ïïS ì
ï =ïî

&
 (8) 

This system is called a linear structured system if the 

entries of the composite matrix 
0 0

A B E
J

C

L L L

L

L

é ù
ê ú=
ê ú
ë û

 

are either fixed zeros or independent parameters (not 

related by algebraic equations). { }1 2, ,..., kl l lL =  

denotes the set of independent parameters of the 

composite matrix JL . 

For such systems, one can study generic properties, 

i.e. properties which are true for almost all values of 

the parameters collected in Λ [15]. More precisely, a 

property is said to be generic (or structural) if it is true 

for all values of the parameters outside a proper 

algebraic variety of the parameter space. 
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A directed graph ( ) ( , )G V WLS =  can be associated 

with the structured system of type (8): 

 the vertex set is V U D X Y= È È È  where U, D, 

X, and Y are the input, disturbance, state and 

regulated output sets given by 

{ }1 2, ,..., mu u u ,{ }1 2, ,..., qd d d ,{ }1 2, ,..., nx x x  and 

{ }1 2, ,..., py y y  respectively, 

 the arc set is  

W= ( ){ },, 0i j jiu x BL ¹ U ( ){ },, 0i j jid x EL ¹ U

( ){ },, 0i j jix x AL ¹ U ( ){ },, 0i j jix y CL ¹  where 

, jiAL (resp. , jiBL , , jiEL , , jiCL ) denotes the entry 

(j,i) of the matrix AL (resp. BL , EL , CL ) 

Let 1 2,V V  be two nonempty subsets of the vertex set 

V of the graph ( )G LS .We say that there exists a path 

from 1V  to 2V if there are vertices 0 1, ,...,i i ir  such that 

0 1i VÎ , 2i Vr Î , ti VÎ for 0,1,...,t r= and 1( , )t ti i W- Î

for 1,2,...,t r= . We call the path simple if every 

vertex on the path occurs only once. Two paths from 

1V  to 2V  are said to be disjoint if they consist of 

disjoint sets of vertices. r  paths from 1V  to 2V  are 

said to be disjoint if they are mutually disjoint, i.e. 

any two of them are disjoint. A set of r  disjoint and 

simple paths from 1V  to 2V  is called a linking from 1V  

to 2V  of size r . 

Example 1: Consider the following example of a 

structured system whose matrices of Equation (8) are 

the following: 

1

2

3

0 0

0 0

0 0

A

l

l

l

L

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

,

4

0

0

B

l

L

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

,

8

0

0

E

l

L

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

 

5

6 7

0 0

0
C

l

l l
L

é ù
ê ú=
ê ú
ë û

 

The associated graph ( )G LS is depicted in H. 2. In 

this example, there is only one D − Y path: ( )1 1 1, ,d x y  

then the maximal size of a D − Y linking is one. 

 
H. 2 Directed graph ( )G LS of Example 1 

 

 

3.2 Disturbance rejection by state feedback for 

structured system 

In order to solve the disturbance rejection problem in 

the context of structured systems, we will define the 

first important sets of vertices in the graph ( )G LS . 

Definition 1: Consider LS  a structured system of 

type (8) with associated graph ( )G LS . Let us define 

the vertex set I *
 as follows: 

I * = { ix XÎ  | the maximal size of a linking in 

( )G LS from { }iU xÈ to Y is the same as the 

maximal size of a linking in ( )G LS  from U to Y , 

and the minimal number of vertices in X UÈ is the 

same for both such maximal linkings}.  

The set I *
 corresponds to the states for which an 

unmeasurable disturbance affecting directly these 

states can be rejected by state feedback [8]. Notice 

that I * can be computed independently of the sensor 

network since its computation involves uniquely the 

matrices AL , BL  and CL in (8). 

With the definition of I * , the solubility of the DRSF 

problem was graphically characterized in [8]: 

Theorem 1: Consider LS  a structured system of type 

(8) with associated graph ( )G LS . The problem of 

disturbance rejection by state feedback is generically 

solvable if and only if the disturbances affect only 

state vertices of I * , i.e. for any ( , ) ,i j jd x W x I *Î Î . 

From the definitions of I * , checking condition in 

Theorem 1 amounts to compute in ( )G LS  some 

maximal linkings with minimal number of vertices. 

This can be done using standard algorithms of 

combinatorial optimization as max-flow min-cost 

techniques [16], [17]. This means that for a given 

sensor network, the solvability of the DRSF problem 

can be checked in polynomial time. 

 

Return to the structured system in Example 1 with the 

directed graph ( )G LS presented in H. 2. The vertex 

set I *  can be calculated due to Definition 1. The 

maximal size of a linking from U to Y is 1 and the 

minimal number of vertices in X UÈ in such a 

linking is 2, for example the path (linking of size 1) 

( )1 1 1, ,u x y . 

A maximal linking from { }1U xÈ to Y is of size 1 but 

the minimal number of vertices in X UÈ in such a 

linking is 1, for example the linking( )1 1,x y . 

Then 1x I *Ï . 

A maximal linking from { }2U xÈ  to Y is of size 2 

with the linking( )1 1 1, ,u x y , ( )2 2,x y . Then 2x I *Ï . 

The state vertex 3x I *Î since a maximal linking from 

{ }3U xÈ to Y is of size 1 and the minimal number of 

vertices in X UÈ in such a linking is 2.  
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We obtain { }*

3I x= . The disturbance 1d  arrives on 

state vertex 1x I *Ï then by Theorem 1, the problem 

of disturbance rejection by state feedback is 

generically not soluble. 

 

3.3 Disturbance rejection by measurement 

feedback for structured system 

 

The linear system of the form (3) can be redefined in 

structured context. Consider linear systems of type (3) 

with parameterized entries and denoted by z

LS as 

follows: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

z

x t A x t B u t E d t

y t C x t

z t H x t

L L L

L L

L

í = + +ïïïïS =ì
ïïï =ïî

&

 (9) 

This system is called a linear structured system if the 

entries of the composite matrix 0 0

0 0

z

A B E

J C

H

L L L

L L

L

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

 

are either fixed zeros or independent parameters (not 

related by algebraic equations). { }1 2, ,..., hl l lL =  

denotes the set of independent parameters of the 

composite matrix JL . 

 

For this linear structured system, we can associate a 

directed graph ( ) ( , )zG V WL
¢ ¢S = in the same manner 

as the directed graph ( ) ( , )G V WLS = in section 3.1, 

i.e. 

 the vertex set V V Z¢= È where Z is the 

measured output set given by { }1 2, ,...,z z zn , 

 the arc set is XZW W W¢= È  where 

i j ,ji={(x , z )|H   0}XZW L ¹ , , jiHL  denotes the 

entry (j,i) of the matrix HL . 

Note that the determination of I * from Definition 1 

depends only on the matrices AL , BL  and CL . 

Therefore, the vertex set I * in ( )zG LS is the same as 

in ( )G LS . Recall that I *
 characterizes the states for 

which an unmeasurable disturbance affecting directly 

these states can be rejected by state feedback. 

 

A condition for the DRMF problem is derived in [8].  

However, this condition does not provide much 

information on the solvability of the DRMF problem 

with respect to the possible location of sensors. It 

means, when the problem of DRMF is not soluble, 

where and how many new sensors can be added such 

that this problem becomes soluble. Therefore, in [18] 

we revisited this problem and gave alternative 

necessary and sufficient solvability condition. This 

condition will give new insight into the problem and 

provide with useful information on the number and 

the location of the sensors to be implemented. Let us 

give first some definitions. 

Definition 2: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS . Define
I

F * , the 

frontier of I * , as the set of vertices 

{ | ( , ) , }i i j jI
F x I x x W x I*

* *¢= Î $ Î Ï  

The set 
I

F * contains the vertices of I * which have at 

least one successor outside of I * . Practically, the 

frontier 
I

F * connects the vertices of I * with the state 

vertices which are outside of I * . If the disturbance 

affects a vertex in I * , the effect of the disturbance 

will propagate firstly in  I * and then must go through 

I
F * before going out of I * . 

Definition 3: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS . For a 

disturbance id  which affects at least one vertex in I * , 

denote ir  (resp. ( , )i jl d x ) the length of a shortest path 

from id  to 
I

F * (resp. from id  to jx I *Î ) where the 

length of a path is the number of arcs it is composed 

of. Define iD  the set of vertices: 

{ }| 0 ( , )i j i j iD x I l d x r*= Î < £   

We call this set the disc associated with the 

disturbance id . 

In fact, when a disturbance id  affects a vertex in I * , 

its effect will propagate outside I * . The set iD  

defined above contains the states that have been 

affected by the disturbance id  when the effect of this 

disturbance reaches the frontier 
I

F *  

In the following theorem we give a new insight into 

the DRMF problem and prove that it is sufficient to 

study this problem on a part of the state space [18]. 

Theorem 2: Consider z

LS  a structured system of type 

(9) with associated graph ( )zG LS  and affected by the 

disturbances 1,...., qd d . The DRMF problem is 

generically solvable if and only if: 

 1,...., qd d , affect only state vertices of I * , i.e. for 

any( ),i jd x W ¢Î , jx I *Î . 

 The maximal size of a linking in ( )zG LS  from D 

to Z is the same as the maximal size of a linking 

in ( )zG LS  from D to
I

Z F *È , and the minimal 

number of vertices in X is the same for both such 

maximal linkings. 

Interpretation: 

Since the first condition is a necessary and sufficient 

condition for the solvability of the DRSF [8], it is 

necessary also for DRMF problem. The second 

condition corresponds, in graphic terms and within 
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our framework, to an Unknown Input Observer 

problem [3], [19]. The condition expresses the fact 

that it is possible to estimate the effect of the 

disturbances at 
I

F * from the measurements without 

the knowledge of the disturbances. It is a natural 

condition since when the effect of the disturbances at 

I
F * cannot be estimated from the available 

measurements, the unknown effect of a disturbance 

on
I

F * will propagate out of I * and cannot be rejected 

by state feedback and consequently by measurement 

feedback. The first part of the condition is a rank 

condition. When it is not satisfied, we therefore need 

more sensors to solve the problem. The second part of 

the condition, when not satisfied, means that the 

sensors give information on the disturbance too late. 

 

4. Sensor location for the disturbance 

rejection by measurement feedback 
In this section we will examine the consequences of 

Theorem 2 on the possible sensor location for solving 

the disturbance rejection by measurement feedback 

problem. The first result shows that it is useless to 

measure variables outside I * . 

Proposition 1: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS . Assume that 

the DRMF problem is generically solvable. A sensor 

jz ZÎ  such that for any ( , )i jx z W¢Î , \ix X I *Î  (i.e. 

jz  measures only states out of I * ) is of no use for 

solving the DRMF problem. 

 

State now a result giving the minimal number of 

sensors to be implemented [18]. 

Proposition 2: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS . The problem 

of DRMF is generically solvable only if the number 

of sensors is greater than or equal to the maximal size 

of a linking from D to 
I

F *  in ( )zG LS  . 

 

The following result shows that it is necessary to have 

a measurement in each disc iD  associated with 

disturbance id . Remark that one measurement can be 

valid for several discs. 

Proposition 3: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS . The problem 

of DRMF is generically solvable only if for any iD , 

1,2,...,i q= , there exists ix D* Î  and z Z* Î  such 

that the arc ( , )x z W* * ¢Î . 

 

The following theorem proves that measuring states 

of I *  sufficiently close to the disturbances and in a 

decoupled manner is sufficient to solve the DRMF 

problem. 

Proposition 4: Consider z

LS  a structured system of 

type (9) with associated graph ( )zG LS  and affected 

by the disturbances 1,...., qd d . Assume that the 

disturbances affect only state vertices of I * , i.e. for 

any( ),i jd x W ¢Î , jx I *Î . Then the DRMF problem is 

generically solvable if in ( )zG LS there exists a linking 

of size q from D to q vertices of Z i.e. 1 1( ,...., )id z , 

2 2( ,...., )id z ,…, ( ,...., )q iqd z such that: 

 ( ,...., )j ijd z  is a shortest path from 

( 1,..., )jd j q=  to Z. 

 the number of state vertices in the path 

( ,...., )
jj id z  is lower than or equal to jr , the 

number of state vertices in a shortest path from 

jd to 
I

F * . 

 

5. Disturbance rejection for a thermal 

process 
5.1 The system 

Consider the thermal process described in H.3. 

 
H. 3 The system made up of 5 tanks 

 

This process consists of five tanks such that each tank 

is fed by a fixed water flow: 1 2( )F F+ for tank 1 and 

3, 2F  for tanks 2 and 4, 1 2( 2 )F F+ for tank 5. The 

system control input is the heating power W . The 

regulated output is 5T , the temperature of the fifth 

tank. The disturbances are the variations of feed flow 

temperatures 
1FT  and 

2FT . The objective is to 

determine a dynamic measured output feedback such 

that 5T  is not sensitive to the variations of 
1FT  and 

2FT . 

This process can be linearized around a given 

operating point as a system of the type defined by (1) 

where 

[ ]

1 2

1 2 3 4 5

5

,

,

T

T

F F

x T T T T T u W

d T T y T

= D D D D D = D

é ù= D D = Dê úë û

 

and the state matrices 
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1 2

1

2

2

1 2 1 2

3 3

2 2

4 4

1 2 2 1 2

5 5 5

( )
0 0 0 0

0 0 0 0

( ) ( )
0 0 0

0 0 0

( ) ( 2 )
0 0

F F

C

F

C

F F F F
A

C C

F F

C C

F F F F F

C C C

é ù- +
ê ú
ê ú
ê ú
ê ú-ê ú
ê ú
ê ú
ê ú

+ - +ê ú
= ê ú
ê ú
ê ú

-ê ú
ê ú
ê ú
ê ú
ê ú+ - +
ê ú
ê ú
ë û

3

0

0

1/

0

0

B C

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

,

1 1 2 1

2 2

/ /

0 /

0 0

0 0

0 0

F C F C

F C

E

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

 

[ ]0 0 0 0 1C =  

iC is the heat capacity of the thi tank. 

This model clearly exhibits the physical structure of 

the process. Note that this model is not exactly 

structured as in Section 3 since some dependencies 

exist between the matrix entries. Nevertheless, in 

order to illustrate the approach, we will consider a 

structured system of the form defined by equations (8) 

that has the same zero/nonzero structure as the 

physical system with the following matrices: 

1

2

3 4

5 6

7 8 9

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0

A

l

l

l l

l l

l l l

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

,
10

0

0

0

0

B l

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

,

11 12

130

0 0

0 0

0 0

E

l l

l

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
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The associated graph of this structured system is 

depicted in H. 4. Note that this system is not 

controllable since the state vertices 1x , 2x and 4x are 

not relied to the input vertex u . 

 
H. 4 The system made up of 5 tanks 

 

5.2 The solvability of the disturbance rejection 

From Definition 1, we obtain 1 2{ , }I x x* = . We can 

verify on the associated graph in H. 4 that the 

disturbances affect directly only state vertices of I * . 

According to Theorem 1, the problem of DRSF 

generically solvable. 

We will now study the sensor location problem for the 

DRMF. From Definition 2 and Definition 3, we have 

the frontier 1 2{ , }
I

F x x* = , the disc associated with the 

disturbance 1d  is 1 1{ }D x=  and the disc associated 

with the disturbance 2d  is 2 1 2{ , }D x x= .  

By Proposition 1, the sensors which measure only 

vertices 3x , 4x and 5x , i.e. which measure only outside 

I * are useless for the solubility of the DRMF. 

A maximal linking from D to 
I

F * corresponds to 

1 1 2 2{( , ),( , )}d x d x which is of size 2. From Proposition 

2, one needs at least two sensors to reject the 

disturbance by measurement feedback. Moreover, by 

Proposition 3 there must be at least one measure in 

each disc 1 1{ }D x=  and 2 1 2{ , }D x x= . With 1z  and 

2z  as shown in H. 5, we satisfy the conditions of 

Proposition 4 and the DRMF problem is solvable. 

With these measurements, we obtain: 
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16
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0 0 0 0
H

l

l
L

é ù
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ê ú
ë û

 

  
H. 5 Graph of the five-tank system with measurements 

Indeed, it turns out that on this model, the 

measurement of 1x and 2x provides early information 

on the disturbances that allows us to compensate in 

time with u the effect of these disturbances on the 

regulated output y. 

 

5.3 Calculation of the dynamic measured output 

feedback compensator 

Here, the matrices in (4) are: 
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Therefore in this example, equation (6) can be 

reduced to: 

( ) ( ) ( ) ( ) 0G s F s N s K sL L L L+ =  

We then obtain 3 5 8 4

10 15 7 10 16 6
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then we can get the following realization for the 

dynamic measured output feedback compensator: 
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The results regarding solvability of the DRMF 

problem only guarantee that the transfer from the 

disturbance to the regulated output is null but do not 

take into consideration the stability issues. That is 

why this approach needs further analysis to be applied 

in practice. With the above compensator, we have the 

dynamic matrix of the closed loop system with 

extended state 
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e

x t
x t

w t

é ù
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ê ú
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The characteristic polynomial of the closed loop 

system is: 
2

1 2 4 9 6det( ) ( )( )( )( )( )CLsI A s s s s sl l l l lL- = - - - - -

Since 1 2 4 6 9, , , ,l l l l l are negative by nature, i.e. for 

any positive value of the physical parameters, the 

closed loop system is stable. 
 

5.4 Simulation results 

We will now test the system using the following 

physical values: 

 All the tanks volumes are 5l which leads to a heat 

capacity of 20.93JK
-1

. 

 The flow rates are F1 = F2 = 0.1 l/s 

 The feed flow temperatures are 
1

20 5FT C= ± °  

and 
2

60 5FT C= ± ° . 

 Our set point corresponds to a temperature of 

T5=50°C with two feed flows at 

1
20FT C= ° ,

2
60FT C= ° , which implies a heating 

power of u = 4.186kW. 

Our aim is to maintain the output temperature at 

T5=50°C for any variation of the feed flow 

temperatures
1FT and

2FT . H.6 shows step disturbances 

on the temperature feed flows and the open-loop 

effect on the regulated output. H.7 shows the 

behaviour of the closed loop system with the DRMF 

controller.  

 

6. Concluding remarks 
In this paper we revisited the disturbance rejection 

problem in a structural way. We gave some 

understandings and useful information about this 

topic. The necessary and sufficient conditions for the 

problem to be solvable were given. In the DRMF 

case, we showed that the problem reduces to an 

unknown input observer problem on a subset of the 

state space. This structural result allowed us to study 

the DRMF problem irrespective of the sensors 

network and then to determine the minimal number of 

sensors to be implemented and to show that it is 

useless for the problem to measure states in some 

region of the state space. Finally, we provided with a 

constructive sensor network configuration which 

solves the DRMF problem. This last result is useful in 

practice for a sensor network design but remains only 

sufficient. 

 
 
H. 6 Temperature of feed flows and regulated output 

without measurement feedback 

 

  
H. 7 Temperature of feed flows and regulated output with 

measurement feedback 
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