Ky yéu Héi nghi Khoa hoc Quéc gia lan thir IX “Nghién ciru co ban va vmg dung Cong nghé théng tin (FAIR'9)”; Can Tho, ngay 4-5/8/2016
DOI: 10.15625/vap.2016.0001

A METHOD TO SPECIFY SOFTWARE FUNCTIONAL
REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

Chu Thi Minh Hue'?, Nguyen Ngoc Binh? Dang Duc Hanh?
! Hung Yen University of Technology and Education
2The VNU University of Engineering and Technology
huectm@gmail.com, hanhdd@vnu.edu.vn, nnbinh@vnu.edu.vn

ABSTRACT — In this paper, we propose the next version of Use-case Specification Language (USL) that allows us to formally
specify each use case at the user's requirement level with a single model, and without using the detailed use case design. We also
propose a formal specification method for the functional requirements. The formal requirement specification can be used to
automatically generate system level test cases. Version 2.0 of the USL is defined by extending the activity diagram with a Contract
concept. This concept enables a more detailed specification of information when performing an action or a transition. The USL
specifies the followings: sequences of actions in flows of events, input and output parameters when performing use case,
precondition and post-condition of use case, satisfy conditions on input and output parameters when performing an action or a
transition, <<include>> and <<extend>> relations with other use cases, maximum number of repeated times of an action (if any),
and change effect in value of input parameters when performing an action or a transition. Our key contributions include a
MetaModel (which describes an abstract syntax), a concrete syntax for USL, a concrete textual syntax via BNF, and a formal
semantic definition of USL in general.

Keyword — Use case, functional requirement, USL, formal specification.
I. INTRODUCTION

Software testing is an essential activity to ensure software quality in the software development process.
Nowadays, the size and complexity of software is increasing, leading to the increase in the cost of time and resource
needed for the testing activities. Thus, it is necessary to improve test automation techniques. The software testing
process can be divided into three main phases: test case design, test execution and test evaluation. In practice, test case
design is the most difficult to automatic. In functional testing, test case design is usually performed manually based on
the software requirement specification document. Functional requirements are often specified by the use case diagram
and the description of each use case is written in natural language in a given format. Therefore, the automatic
generation of test cases from the use case specification is still a huge challenge for the research community.

In order to automatically generate the test cases from the software functional requirements, we need to transfer
the use case description in the form of natural language into a formal specification. This specification can be used to
automatically identify different test cases when performing a use case. Test case information includes input parameters,
pre-conditions of test case performance, expected output, and test steps.

There have been many research focusing on the problem of how to formally specify use case towards
automatically generating test scenarios and test cases. For example, the authors of [2] used a markup language structure
to specify use case scenarios of a use case. This method focuses on the specification of the event flows of the use case.
However, it does not specify other information of the use case.

The authors of [3] proposed a contract to specify pre and post conditions when performing the use case. The
sequence diagram is used to describe use case scenarios. However, details of the method for determining the
constraints were not mentioned in the [3].

The authors of [4] specified each use case by a structured natural language. The scope of specification includes
pre- and post-conditions of the use cases and its set of interactive sequences that are described in the basic flow and the
alternate flows. Each interaction is specified by a sentence of the structured Subject Verb Object (SVO). The use case
scenarios are represented by activity or sequence diagram. The main drawback of this method is that a use case
description requires 2 structures: the one is in natural language and the other is an activity or sequence diagram. This
method is does not consider the relationship among the use cases.

The authors of [5] specified use case in a language named Restricted Use Case Modeling (RUCM). RUCM is
defined based on a template containing a set of restriction rules in the natural language. This language defines a set of
keywords for describing the flows of events. The drawbacks of the method include the use of natural language
processing (NLP) to identify use case information and incomplete specification of all the relationships among event
flows.

Other approaches of [6] - [9] used activity diagram to specify the use case behaviors. These researches focused
on specifying the action sequences and guard conditions on the transitions. The authors of [10] used activity diagram to
describe use case information, such as action sequences and transitions, guard conditions on transitions, and
<<include>> relations. However, this method does not specify other information and it also does not separately specify

2 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

actions. The authors of [11] used activity diagram to describe use case. This research defines a method for specifying
sequence interactions in the basic flows and alternate flows, and <<include>> and <<extend>> relations. However, this
method does not specify information about pre- and post-conditions, constraints on the input and output parameters
when executing an action or a transition.

However, none of the above researches clearly specifies the input and output parameters when executing a use
case. Some of these researches do not consider these parameters, while others, such as [5], require using a complex
extraction to extract the parameters from the OCL expressions. Further, there are no researches that propose to specify
exactly the allowed maximum repeated times of an action. There are also no research, which separately specifies actor
actions, the system actions, and actions that are performed outside of the system. Very few researches fully specify the
<<include>> and <<extend>> relations among the use cases.

In this paper, we expand the Use case Specification Language (USL) of [12] and [13] as version 1.0 to version
2.0 to describe use cases. We also define a formal specification method for software functional requirements towards
the automatical generation of system level test cases. In our method, software functional requirements are formally
specified by use case diagram and each use case is specified by a USL diagram. A use case diagram in USL describes
information more fully, which includes pre- and post-conditions, actor actions, system actions, actions that are
performed outside of the system, input and output parameters when performing use case, satisfy constraints on the
input and output parameters when performing an action or a transition, the numbers of maximum repeated times of an
action, <<include>> and <<extend>> relations among the use cases. To define USL, we build a meta-model and define
semantics for the language.

The idea of USL was first proposed in [12] as version 1.0. The concrete textual syntax of the USL is described
via BNF in [13]. In these works, we proposed methods and algorithms that automatically generate system level test
cases from USL diagram. In this paper, we present an expansion of the USL and the formalization of the language.
More specifically, we specify more actions that are performed outside of the system, and <<include>> and <<extend>>
relations among the use cases. In addition, we add some attributes into the Contract concept to specify input and output
parameters of use case, the maximum repeated times of an action, and effect on input parameters when executing an
action or a transition.

This paper is organized as follows: Section 2 introduces the motivation for developing USL. Section 3, we
present syntax and semantics of our USL language. Section 4 focuses on the methods to use USL language for
specifying functional requirements. We conclude the paper in Section 5.

II. MOTIVATION

In this paper, we use 3 use cases of the ATM system that are described in [15]. These use case are Insert card,
Withdraw, Help to motivate and illustrate USL. Use case Insert card allows a user to enter a PIN code when inserting a
bank card into the ATM machine. Use case Withdraw allows the user to withdraw money from the ATM machine. Use
case Help allows the user to request the display of help information when performing a transition. Use case Insert card
is included in the use case Withdraw. Use case Help is extended from the use case Withdraw. Figure 1 is a use case
model of the 3 use cases above. Details of each use case are described in Table 1.

As show in Figure 1, a case diagram shows

information about actors, use cases and relations. To s @”f‘_"b

reduce complication and increase their reuse, the use) -
cases are reorganized using relations [16] as W= L ' (Holpw
<<include>>, <<extend>>, <<inheritance>> relations.... K et P —
In this research, we focus on the <<include>> and "™ = TR
<<extend>> relations. Figure 1. Use case diagram of Withdraw, Insert card, and Help

An <<include>> relation is considered to be a part of the basic flow. An extending use case can be triggered at
an extension point or in any actions when a trigger condition is satisfied. The <<extend>> relation is considered to be a
part of an alternate flow.

Table 1. Use case description of Withdraw, Insert card, and Help

Use Case UC1: Withdraw Alternate flows
Primary Actor: User 3a Show Help Button
Pre-Condition : Insert card use case was successful 1. The actor press Help button, then the system calls
Post-Condition: If the use case was successful the the extending use case E1.
system updates the balance, dispenses the cash, prints | 98 The actor enters an invalid amount .
a receipt for the user. If not, the system displays an 1. S The system displays an error message “Amount is
error message invalid, enter a valid amount” , return 3

_ _ _ 6a. The balance isn't sufficient
Trigger: User clicks menu Withdraw 1. S: The system checks whether the user has
Basic flow

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh 3

1. A: The user-actor Inserts Card into ATM (include) | overdraft permission. If has go next, if don’t has
2. A: The actor click menu Withdraw goto3b
3. S: System shows Withdraw screen 2. S. The system compares the amount required
4. A: The actor enters the amount she/he with the maximum allowed limit for overdraft, if
wants to withdraw the amount needed is within limit, go to 5, if not go
5. S: The system checks whether next to 3
the value entered is valid 3. S. the system displays an error message “Amount is

6. S: The system will retrieve the balance of the beyond Limit”

user then check the balance is sufficient to 6b. the user has no overdraft permission

withdraw 4. S:an error message is displayed “ balance is
7. S:The system updates the balance, dispenses not enough, No permission granted”

the cash and finally prints a receipt for the user Extension Points
8. The user receive money and card E1. Help about Withdraw: The extension point occurs at

step 2 of the basic flow if user presses Help button
Use Case UC2: ATM Insert Card Alternate flows
Primary Actor: User 2a. Card not valid
Pre-condition : ATM System is ready 1. S: Display message and reject card
Pos-condition: payment is successful, credit card is 4a. PIN not valid
updated. 1. S: Display message and ask for retry (twice)
Trigger : User Insert Card into ATM 4b. PIN invalid 3 times
1. S: Eat card and exit
Use Case UC2: Help

Basic Flow Primary Actor: User
1. A:Insert card Pos-condition: Return before screen
2. S:Validates card and asks for PIN Basic Flow
3. A:EntersPIN 1. S: System Show Help screen
4. S:Validates PIN 2. A: If users enter Close then show Close Help Screen
5. S: Allows access to account

Table 1 is the 3 use cases in natural language using the format defined in [1]. This description includes the use
case’s name, triggers, preconditions, post conditions, primary actors, secondary actors, basic flow, alternate flows and
exceptions.

When building system level test cases, testers read information about a use case to generate different test
scenarios. These test scenarios are generated based on the event flows of use case. A problem is that, we cannot always
identify all the test scenarios. For example, a use case containing loops in the event flows may have an infinite number
of execution paths. To ensure the coverage quality of the generated test cases, we need to indentify the test scenarios in
two cases. The first case is for precondition checking loops. This case has three test scenarios. The first scenario is loop
has no iterations. The second scenario is loop has one iteration. The third scenario is loop has n iterations (n>1) and n is
the maximum repeated times of some actions. The second case is for post-condition checking loops. This case has three
test scenarios. The first scenario is loop with one iteration. The second scenario is loop with two iterations. The
scenario is loop with n iterations (n>1) and n is the maximum repeated times of some actions. For example, in Insert
card’s description, the loop of action 3 (Enter Pin) is described in alternate flow 4b, has the repeated max times of 3.
This is because when the user enters the wrong PIN code 3 times, the loop does not go back to action 3 but performs
action 4b inputting false PIN code 3 times, then the loop does not go back to action 3 but performing action 4b and end
the use case.

To identify different test cases, from a use case testers have to identify such information as input and output
parameters of the use case. The input parameters of the test cases are provided by actor, and system status. Take use
case description of Insert card as an example. The input parameters are: Card (ATM card), PinNumber (PIN code),
EPTimes (number of times to enter PIN code). Card and PinNumber are provided by user. EPTimes is the system
status. EPTimes status can change when performing an action or a transition. Before performing the action EnterPin,
this status is assigned the value 0. When performing EnterPin action, this status is increased to 1. At each action or
transition, the conditions concerning the input and output parameters need to be satisfied. From these conditions, we
can identify different input and output value sets for each test scenario. Moreover, in each test case, testers need to
identify the preconditions to perform the test case. Test steps are ordered actions that the actor takes when performing
a use case.

There have been a lot of researches focusing on using use case specification methods to automatically generate
test cases. However, there has been no research that produces a formal specification that contains all of the information
mentioned above. To address these challenges, we proposed a USL language for use case formal specification. USL
language is defined by extending the activity diagram with a Contract conception. The structure of activity diagram
specifies the event flows of the use case. We redefine actions in order to separately specify the actor actions, the system

4 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

actions and the actions that are outside of the system. The <<include>> and <<extend >> relations are defined as
abstract actions includedAction and extendingAction. The Contract concept associating with each action and transition
can be specified with more use case information, such as input and output parameters when performing the use case,
pre- and post-conditions of the use case, the constraints on input and output parameters at each step of performing
actions or transition and effect on input parameters when performing an action or transition. The USL language allows
us to specify a use case with a single diagram. The use case specification is as easy to understand as the user
requirement.

III. USL FORMAL SPECIFICATION LANGUAGE

In this section, we present the syntax and semantics of the USL version 2.0 as extended from USL language
considered as version 1.0 in the previous researches [12] [13]. The extension of version 2.0 compared to version 1.0 is
addition of some concepts: AgentAction, IncludedAction, ExtendingAction, ForkNode, JointNode. We also add such
new properties in the Contract as Inputs, Outputs, Maxloop, Effect. The USL provides the ability to specify information
on the use case more fully.

Concepts

USL is proposed on the basis of extending UML activity diagram. We give concept of Contract to describe the
constraints for steps of performing use case and providing more information for actions and moving flows. The
concepts in USL include:

- InitialNode and FinalNode correspond to start and finish nodes of use case. A use case has only an InitialNode
but may have a lot of FinalNodes. Concrete notation of InitialNode and FinalNode is shown as node 0 and node
9 in Figure 5.

- ActorAction, SystemAction, and AgentAction correspond to actor action, system action and actions outside the
system. The actions outside the system is actions that supplement information for use case. The semantics of use
case do not change where these actions can be specified or not (an example in use case Sale “Customers choose
goods and bring them to counter, ask to pay”). Concrete notation of ActorAction, SystemAction, AgentAction is
shown as nodes 2, 3, 8 in Figure 5.

- IncludedAction corresponds to another included use case which is included in a use case and is considered to be
an action of the basic flow. Concrete notation of IncludedAction is shown as node 1 in Figure 5.

- ExtendingAction corresponds to another extending use case which is extended at extending point and is
considered to be an action in an alternate flow of the use case. Concrete syntax of ExtendingAction is shown as
node E1 in Figure 5.

- DecisionNode is a decision node which has one incoming transition and multiple out going transitions, of which
only one will be taken. Condition declared in Contract associating on transition should be made to ensure that
only one transition can be taken. Concrete notation of DecisionNode is shown as node d1 in Figure 5.

- ForkNode is a control node that splits an incoming flow into multiple concurrent outgoing flows. Tokens
arriving at a fork are duplicated across each outgoing transition.

- JoinNode is a control node that synchronizes multiple transitions. If there is a token offered on all incoming
transitions, then a token is offered on the single outgoing transition.

- Transition is moving flow with directions between actions.

- Contract is a concept adding information to use case, actions and transitions.

- HasContract is a association between actions or transitions and Contract attached on it.

The Contract is structured as follows:
Contract Name - Name is the name of the Contract;

Inputs VariableName: Type - VariableName is the name of the input and output parameters when performing

Outputs VariableName: Type use case. They are declared correspondingly in Inputs and Outputs;

- Condition is a logical or OCL expression clause declared corresponding in Pre
and Post. Conditions in Pre describe the constraints on the input parameters
Post Condition corresponding to execute actions or transition. Conditions in Post describe
expected outputs that system returns when taking actions;

Pre Condition

MaxLoop Intvalue
- Intvalue declared in MaxLoop is integer value to specify maximum number of
repeated times of an action; Expression declared in Effect is the expression
which assigns new values for the input parameters when performing an action or
a transition.

Effect Expression

We built abstract syntax of the USL by a metamodel as shown in Figure 2. The specifications as shown in
Figure 4 and 5 conform to the metamodel. The USL concepts are represented by graphical notation signed as in
Figure 5.

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh

We use a BNF-like (Backus —
Naur Form) notation to present the
USL grammar with the following
conventions. Terminal symbols are
bold strings enclosed in single quote.
The remaining strings are non-
terminals. The non-terminal of the first
production is the start symbol of the
grammar. Elements of a sequence are

separated by blanks, alternative
elements are separated by a “|”symbol.
Optional elements are closed in

brackets “[*“ and “]”, Elements that can
occur zero or more times are enclosed
in braces “{* and “}”. Parentheses “(*“
and “)” are used to group elements.
Non-terminal symbols of the form
“x1d” have the same definition as the non-terminal ““id”.

USLLanguage ::= ’USLDiagram’ uld {USLDef}

USLDef ::="Actions’ listActions ’Transitions’ listTrans
’Contracts’ listContracts

listActions ::= (initialNode) {nodes} {finalNode}

initialNode ::= ’InitialNode’ ild {actionDef}

finalNode ::= FinalNode’ flId {actionDef}

nodes ::= aAction | sAction | agAction | iAction | eAction

dNode | fNode| jNode

aAction ::=’ActorAction’ ald {actionDef }

sAction ::= ’SystemAction’ sId {actionDef}

agAction ::=’AgentAction’ agld { actionDef }

iAction ::=’IncludeAction’ ild { actionDef }

eAction ::= ’ExtendAction’eld { actionDef }

dNode ::= ’DecisionNode’ dId {actionDef}

fNode ::= ’ForkNode’ fld {actionDef}
jNode ::="JoinNode’ jId {actionDef}
listTrans ::= {trans}

trans ::= "Transition’ 1Id {tranDef}

listContract ::= {Contract}

Contract ::= ’Contract’ cId {ContractDef}

ContractDef ::= [’Inputs’ defineVar]

[’Outputs’ defineVar] [’Pre’ conditionEx]

[’Post’ conditionEx] [’MaxLoop’ intvalue]
[’MaxLoop’ "TRUE’ | 'FALSE’]

defineVar ::= (variable: type | ’DataBase’) {, variable:

type | ’DataBase’ }

Formal semantics of USL

Figure 2. Metamodel of USL

type ::= ’String’ | ’Int’ | object | ’Bool’ | ’Char’ |
’Double’ | ennum

sentence = atomicSentence | sentence connective
sentence | quantifier variable,... sentence | 'NOT ~
sentence | ’(’ sentence ’)’;

connective 2= AND’ | 'OR ’ | ’IMPLIES’ |
"EQUIVALENT’;

quantifier 2=V,

atomicSentence ::= term pt term | "TRUE’ | 'FALSE ’

term = constant | variable;

variable =0a L2 A L2)0 el
| 3A’ .. ’Z’ | ’_3 | 305 . .’9’}

pt::: 3>7 ‘ 7<’ | ’>:’ | 7<:’ ‘ 7>9 | e’ ‘ ,E’ ‘ 7<>’ ‘ 7:’
Constant::: {7 9 | 2% | ’+’ | 7_9 | 7\9 | 7.’ ‘ 70’ . .39’ ‘1?7 .. 3~’ }
function::= (Ca’ ..z’ |’A’ ..°Z° |7) {a L2 | AL
’Z’ | ’_’ | ’O’ . -’9’}

intValue::= (1. .’9%){’°0"..”9’}
tranDef ::=’Out’ ild |sld | ald | dId

’In> fId | sId | ald | did

[’HasContract’ cId]
actionDef ::= [’Description’ **’ actionDes *”’]

[’HasContract’ cId]

id =022 |’A 2200 Pal L A L2
> 71°07..°9%
actionDes 1= {""|’I" ..

LIS | 40’ . c9$ }

This section will provide formal semantics of the USL. The functional requirements are specified by some use
case diagrams. Each use case is specified by a graph in the USL, in which each use case scenario is an executable path
in the USL. The USL allows us to specify a use case description as a diagram. The USL diagram includes collection of
nodes which are connected by edges. It also includes a set of Contracts associated with nodes or edges. It is a kind of
directed graph. Tokens which indicate control flow along edges from source node to the target nodes driven by the
actions and contracts. The USL diagram has four kinds of modeling elements: nodes, edges, Contracts, Contract

relations.

Definition 1: A USL diagram is a seven-tuple D = (A, T, Fou, Fin, C ,a0, &), Where

- A:AaUASUA| UAE UAg U{ao, aL}With:

o A;={a, ay..., an}isafinite set of actor actions (ActorAction);

o As={sy, S,..., sp} is a finite set of system actions (SystemAction); A, ={b4, b,, ...

, by} is a finite set of

included use cases which is included into a use case (IncludedAction); Ag - {dy, ..., d, } is a finite set of
extending use cases which is extended from a use case (ExtendingAction);

6 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

o Ag={0s ..., 0n} is a finite set of actions outside the system. The semantics of use case do not change
whether these actions can be specified or not.

- T={ty, t,,..., 4} is a finite set of completion transitions.

- C = {cy, Cy..., ¢} is a finite set of Contract associated with actions or transitions in the model, which ¢; is in
correspondence with a;e A or tje T. ConA is a mapping from a; to ¢; so that ConA(a;)=c;. ConF is a mapping from t;
to c; so that ConF(t) = ¢;

-Fot €A X T, Fi, €T x A is the flow relation between the nodes and transitions. o is the transition coming out
from a node. F;, is the transition coming into a node.

- @ is the initial node so that 7t €T & (ap, t) EFoy, and if 7¢” €T & (¢, ag) € Finthen Va e{w | (w, ¢t’) eFou}|a €
A&ZAt” €T & (t",a) € F,. That means that the start node must has flow come out, if any, the flow come in
initial node then must come from Included action and no transition come in IncludedAction.

- a_isthe final nodesothat 3t €T & (t,a.) €Fi,, and 2¢’€T & (a,, t) EFgy.

Definition 2: A use case scenario, uSeU in a USL diagram D, can be defined as an execution path from the

S!
InitialNode to the FinalNode consisting of activities and transitions. i.e. Vs, where use Us, us=¢€y 2ty 2 e; 2 t; 2
.. 2t 2e,with eg={ag} or ey € A, e,={a.}, and Vi(0<i<=x) then, and (e;.1,ti.1) € Fout and (ti.4, &) € Fi, and pre
of ConF(ti.,) and ConA(e)) is satisfied.Us is the set of use case scenarios. Each U corresponds to a test scenario.

Definition 3: V is a set of all collective contracts on all use case scenarios Us, in a USL diagram D, can be defined,
each Vg corresponds to a Ug is a set of Contracts in order where v, = U7_#(ConA(e;) U ConF(t;)) U ConA(ey).

IV. FUNCTIONAL REQUIREMENTS SPECIFICATION METHOD USING USL

Figure 2 shows an overview of the formal method for specifying the software functional requirements using
USL. In this method, the software functional requirements are specified by a set of use case diagrams and for each use
case description is specified by a USL diagram. The use case diagram determines information about the use cases and
the performing sequence of use cases. The detailed USL specifications of each use case determine the use case
scenarios and the set of contracts of each use case scenario.

From the use case diagram, we can automatically determine the order in which the use cases are performed by
using the Graph traversal algorithms and by analyzing the relationship among the use cases. Developers will transform
the specification of each use case from the textual description into a USL diagram. We can use the Depth-first search
algorithm to automatically generate use case scenarios and the set of contracts of each scenario. From these, we can
define the test cases that have such information as input and output parameters, values of the input and expected output
parameters, preconditions to perform testing, and test steps.

The transformation from the use case textual description into USL model

The steps to transform the use case textual
description into USL diagram are stated as below.

1. Read the information in the use case diagrams
to get the information about the relationship

among the use cases. ‘ e “ B Use Cose | o 20

2. Transform each use case textual description
format as in [1] to the USL diagram. The &= o | e W A
included case uses and extending use cases are g _oemmm—— P p

transformed firstly. The use cases containing the 4 e . Ml

included use cases and extending use cases are Use Case Dirgrom > Automl
transformed later. Figure 3. Overview of the proposed approach

3. Each use case is specified by a USL diagram based on the following principles:

- Transfer each step in the basic flow and Alternative flows into the corresponding actions such as ActorAction,
SystemAction, AgentAction. The semantic of use case does not change the meaning whether the actions outside the
system transfer or not. Use InitialNode and FinalNode to specify the starting and the end point of the use case.
There is only one InitialNode but there can be lots of FinalNodes.

- If in each system action or actor action, there is the selection of the next actions add DecisionNode to specify.

- Use the Transition directional arrows to specify transition of the action.

- Add ForkNode and JoinNode at the beginning and the ending of concurrence actions.

- Use IncludedAction and ExtendingAction to specify the <<include>> and <<extend>> relation.

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh

- For each relation, the use template has a redefined structure. For instance, the <<include>> relation is considered as
an abstract action of a basic flow, while <<extend>> relation is considered as an abstract action of an alternate flow.
- The use case is extended at any action when satisfying the trigger conditions are regulated to specify as an
ExtendingAction with the transition coming out from initialNode.
- Using the Contract concept to specify information for each action and transition as below
e The contract associated to InitialNode allows us to specify the input and output parameters of use case. It is
corresponding declared in Inputs and Outputs. Preconditions of use case are declared in the pre.
e The contract associated to nodes or transitions, except for AgentAction nodes allows us to specify the
constraints on input and output parameters when performing actions or transitions. The constraints on input
parameters are described in pre. The constraints on output parameters described in post. The effects on input

parameters when performing an action or
a transition are declared in effect.

e If the action has limited times of
repetition, the limited times shall be
declared in MaxLoop, for example in
Contract C3 associated to action 3 in use
case Insert card as in Figure 4.

Case Study

The USL specifications of the three use
cases Insertcard, Help, Withdraw are shown in
Figure 4 and Figure 5 below. There, actions in the
basic flow and alternate flows are specified by
corresponding actions and added with controlling
nodes. The Contracts attached to actions and
transitions allow us to specify detailed information
when performing the use cases. In Figure 5, node 0
(InitialNode) is the starting point of the use case.
Node 9 (FinalNode) is the ending point of the use
case. The corresponding actions 2, 3, 8 are actions
of the actor (ActorAction), the system action
(SystemAction), and the agent action
(AgentAction). Action 1 is the IncludedAction
describing the <<include>> relation between Insert
card and Withdraw. Action E1 is the
ExtendingAction describing the <<extend>>
relation of Help from Withdraw. Contract C1
describes input and output parameters when
performing the use case declared in Inputs and
Outputs, and the precondition of the use case
declared in Pre. Contract C6 describes the
constraints on input parameters to allow the action
5a.1 to occur. These constraints are declared in
Pre. The expected outputs when performing action
2a are declared in Post. In Figure 4, Contract C2
describes the constraints for the transition from d
to 3. These constraints are declared in Pre. Before
executing action 3, the input parameter EPTimes =

is declared in Effect. Contract C3 describes
action 3 that is repeatable up to 3 times. The
maximum of repeated times is declared in
MaxLoop. Whenever action 3 is performed,
EPTimes will be increased to 1 and this is declared
in Effect.

Use Canwe: Help AL T)

Cootract C1 o
Ouls State: Sring

otemes o
Syvtem Show Melp Scraem

Contract £

Contract C)
i wmputs
ST

{ Dangiay Massage and |
. | Ampect card
Comtract ©J P B S S R s

)
8
Sl ARte-Ral J : .
,T. sa ‘ Contract €O B S Contract C2
Soun 0bs 0 stans o Pre*Userchoionsves® ’ actorer 3 T —
- — Enrers M e “Card-vsabect)p

Contract CF

rEr - e — Cromcand| P
contrace s * — o C o0 1) » 0T EmPON]
I oy Vo » Cartl MnoSelectie: | coyvtamos g
3 o5 5 . C = bt Card f]) AND | Vahaates AN - 1
T I“., ST rs e 2 :

T el
=== THwet EPT v =
$e ™
ccsyan 2 EFTincas +
Contiect EX Gard g Exn | g ¥
. Contract C4
10 - ~dlicas o v seri Suod MO
e i - = L) v 7 wr
- 1| Contract €12 . = Sadectiy {
Iyerchoew | | .
e 1 POSE{SSaga = PIN q CondutCard|p disCard.)
s Pre PIN » Cardiw e
Post i T ' o

Conireet 5
L Post “SlaleCerd=Card b
Aeaady”

Use caset Withdraw [[} lamalNose

|
| Contract €1

| Toputs Agount Tnt

: Outputy 'Luu‘(String, stateCard Stning

'

<zincludes> 4

Insent Card
FicalNode

AdsrAston

actorse 2
e (A R The actor Click NMenu Withdraw
P Contract C6 1 Contract C6 |
| Fost “return | Post Help Scoeen |
| Withdrow Screen ™ || shaw abaut Wikdaw™ |
L |

i weaystam 3
-4 Syatem dizplay Withdraw
Scrmn

eantand>> E1 [Pross 3 _‘_
Melp Uss Casa IS F ot

= — S

Contract €9

“atiorr> 4
A Lnulu(l(' -
Cad Permisaion > - The 4101 #ntees The 0OUNL

0
\
H ")
| " '
H i “(Amountc=d) OR | ahe e wants 10 withdeaw
| A(p Presmianion |y ,\mwm Number) \ |
v wiard Id)wnd :: Post (,r,“.!, =Amaunt 14 ! . :(‘onnul(') |
| @ Ornant - il dnv alid, Enter s valid smount™ | BV | Pre Amount 207
| Overdraft™) ! o o Toé system Chacks wherhae the | |
| rEmpty(y 1| Contract C8Pre | ~ value enteced 13 valid
| ' |
| Poat “menap = 1 >
P you dom't ham .: e 7ot
| pamission "
1 withdraw OVer i} i / x Y
| amount In your |1 - m“m:-‘r > b
sccoun™] b ¥
e L 5~ T\ ! | balance of the uses then check the
9 v caysrense o s | | \péancA s sufficles daw
® o—| diaplays an arror 4 'e B ,.L -
— b - NS \".L.'- - | Coutract €4 {
o . - ,_{ e, '] POA*(Cad 0w |
R is e — aystem>> 7) ! ,\'-1-3.-’&1’0:[|
------------- | Amount)) !
| Contract €10 | Ul the uum updaring el 7 . H
! Pre t[the ayatem comperes e[~ T balance, dispensing the can| | (dlipensingihecuk |
| “Caed Parmission - | smount cequiced with 404 finally printg A receipt for) + ’fmm” areceiony . |
| *2alect(p Preniagi | [the maximum ‘“" ved| .~ ol 1, corbioen: '
| oni(p ldmCard Idhan | f""‘" for U\ﬂdul\l,nv)“ a1 |
[@A e ms!] oo = e .
| overdran™))- \ .~ Cryatems> 9 —~——————
| *NotEmpry \ the syaiem displays s .- “pmi>> §
H \ prror matiam G, 3 the uLer recelve manay
o '
Co n-(l(.ll ' (vnlluu(l' |
Pre “Cad-25alact(p Parmissionyp Td=Card 1d) and 1 Salectip Parmlssion(p Id=Cad 1d) and |
| |
1 |

Blank +p OverdrafiyssAmount))
TEmpty ()

|
| |
| |
1 ¢ Card Blank+p Overdraf)>=Amount No®mpyQ™ |
| |

|

Figure 4. USL use case specifications of Help and Insert Card

Through these use case specification examples in the ATM system, we illustrated the different cases when
specifying use cases. These specifications will be the input for automatic test case generation form software functional
specifications. The method of automatical test case generation will be presented in our future work.

V.CONCLUSION

In this paper, we extended the USL formal specification language from version 1.0 to version 2.0 and proposed
a more complete method for specifying the software functional requirements. We solved the problems of other
researches which not being able to simultaneously specify information the following: pre- and post-conditions of use

8 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

case, the relations with the use cases, input and output parameters when performing use case, the maximum number of
repetitions of an action, pre and post conditions when performing an action or a transition. Our method is simple and
close to the natural language descriptions. In addition, USL specifications can be used to automatically generate test
cases. In the future, we will continue to research and improve the method of automatic generation of test cases to
achieve better quality. We also aim set up the algorithms for generating the textual form test case.

REFERENCES

[1] A. Cockburn, Writing Effective Use Cases.: Addison-Wesley, 2001.

[2] Nhuan D, Lai V. Y. N, Tho T. Q, and Thuan D. L, "A framework for automatic construction of test scenarios from use-cases,"
in Ho Chi Minh City Software Testing Conference January 2015, Ho Chi Minh, 2015.

[3] C. Nebut, F. Fleurey, Y. Le Traon, and J. M. Jezequel, "Automatic test generation: A use case driven approach,” IEEE
Transactions on Software Engineering, vol. 32, pp. 140-155, 2006.

[4] M. Smialek and T.Straszak, "Automating acceptance testing with tool support,” in Computer Science and Information Systems
(FedCslIS), 2014 Federated Conference on, 2014, pp. 1569-1574.

[5] C. Wang, F.Pastore, A. Goknil, L. Briand, and Z. Igbal, "Automatic generation of system test cases from use case
specifications,” in In Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, New
York, 2015, pp. 385-396.

[6] M. Chen, P. Mishra, and D. Kalita, "Coverage-driven automatic test generation for uml activity diagrams," in ” Proceedings of
the 18th ACM Great Lakes Symposium on VLSI, GLSVLSI '08, USA, 2008, pp. 139-142.

[71 R. K.Swain, V. Panthi, and P. K. Behera, "Generation of test cases using activity diagram," International Journal of Computer
Science and Informatics, vol. 3, 2013.

[8] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, "A proposed test case generation technique based on activity
diagrams,” International Journal of Engineering & Technology IJET-1JENS, vol. 11, 2011.

[9] N. N. Patil and P. E. Patel, "Testcases formation using uml activity diagram,” in Communication Systems and Network
Technologies (CSNT), 2013.

[10] Jes” us M. Almendros-Jim“enez and Luis Iribarne, "Describing Use Cases with Activity Charts," in Lecture Notes in Computer
Science.: Springer Berlin Heidelberg, 2005, pp. 141-159.

[11] S. Tiwari and A.l Gupta, "An approach of generating test requirements for agile software development,” in Proceedings of the
8th India Software Engineering Conference, ISEC '15, New York, 2015, pp. 186-195.

[12] C. T. M. Hue, D. D. Hanh, N. N. Binh, "A Method to Generate Test Cases from Use Cases," in Fair'8, Ha Noi, 2015, pp. 590-
599.

[13] C. T. M. Hue, N. N. Binh, and D. D. Hanh, "Automatic Test-case Generation from Detailed Use-case Specification for System
Testing," submit to Research, Development and Application on Information and Communication Technology, June 2016.

[14] 1. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach. Redwood, USA: Addison Wesley Longman
Publishing Co, 2004.

[15] IBM, Object-Oriented Analysis and Design with UML2.: IBM Corporation, 2006.

[16] Ivar Jacobson and Pan-Wei Ng, Aspect-Oriented Software Development with Use Cases. Redwood, USA: Addison-Wesley,
2004.

[17] Richard C. Gronback, Eclipse Modeling Project A Domain-Specific Language.: Addison-Wesley, 2009.

[18] V. Panthi and D.P. Mohapatra, "Automatic test case generation using sequence diagram," in International Journal of Applied
Information Systems, New York, 2012, pp. 277-284.

PHUONG PHAP BDAC TA CHU’C NANG PHAN MEM
DPE SINH CAC CA KIEM THU HE THONG
Chu Thi Minh Hug, Nguyén Ngec Binh, Ping Pic Hanh

TOM TAT — Trong bai b4o nay, ching t6i md réng ngbn ngi déc ta ca sir dung (USL) tir phién bdn 1.0 sang phién ban 2.0 cho
phép d4c ta hinh thirc md td cua ting ca sir dung ¢ mirc yéu cau ngieoi ding chi véi mgt mo hinh duy nhat, ma khéng si dung cac
thiét ké chi tiét cia ca sir dung. Chiing 16i ciing néu huéng dan phwong phdp dac ta hinh thic cac yéu cdu chite nang. Cdc dic ta
yéu cau co thé duwoc sir dung dé sinh ti déng cac ca kiém thiz mirc hé thong. Ngon ngir USL duoc mé réng tir biéu dé hoat déng
trong UML va thém vao khai niém Contract nham ddc ta ddy di hon cdc théng tin khi thuc hién ca sir dung nhue: chudi cac hanh
déng trong cac luéng su kién, cac tham sé dau vdo va dau ra khi thuc hién ca si dung, tién diéu kién va hdu diéu kién thuc hién ca
sik dung, diéu kién rang bugc trén da liéu dau vao va dau ra tai méi hanh déng hodc luéng chuyén, méi quan hé <<include>> va
<<extend>>, s6 lan Igp téi da ciia mot hanh d@éng, hiéu img thay déi gia tri tham sé dau vao khi thuc hién mgr hanh d@éng hodc
luong chuyén. Chiing tdi xay dung mét MetaModel md t ¢t phép triru firong, xay ding cl phap cu thé dang van ban bang BNF va
dinh nghia ngit nghia hinh thirc cho ngdn ngiz.

