
Kỷ yếu Hội nghị Khoa học Quốc gia lần thứ IX “Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR'9)”; Cần Thơ, ngày 4-5/8/2016

DOI: 10.15625/vap.2016.0001

A METHOD TO SPECIFY SOFTWARE FUNCTIONAL
REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

Chu Thi Minh Hue
1, 2

, Nguyen Ngoc Binh
2
, Dang Duc Hanh

2

1
 Hung Yen University of Technology and Education

2
The VNU University of Engineering and Technology

huectm@gmail.com, hanhdd@vnu.edu.vn, nnbinh@vnu.edu.vn

ABSTRACT — In this paper, we propose the next version of Use-case Specification Language (USL) that allows us to formally

specify each use case at the user's requirement level with a single model, and without using the detailed use case design. We also

propose a formal specification method for the functional requirements. The formal requirement specification can be used to

automatically generate system level test cases. Version 2.0 of the USL is defined by extending the activity diagram with a Contract

concept. This concept enables a more detailed specification of information when performing an action or a transition. The USL

specifies the followings: sequences of actions in flows of events, input and output parameters when performing use case,

precondition and post-condition of use case, satisfy conditions on input and output parameters when performing an action or a

transition, <<include>> and <<extend>> relations with other use cases, maximum number of repeated times of an action (if any),

and change effect in value of input parameters when performing an action or a transition. Our key contributions include a

MetaModel (which describes an abstract syntax), a concrete syntax for USL, a concrete textual syntax via BNF, and a formal

semantic definition of USL in general.

Keyword — Use case, functional requirement, USL, formal specification.

I. INTRODUCTION

Software testing is an essential activity to ensure software quality in the software development process.

Nowadays, the size and complexity of software is increasing, leading to the increase in the cost of time and resource

needed for the testing activities. Thus, it is necessary to improve test automation techniques. The software testing

process can be divided into three main phases: test case design, test execution and test evaluation. In practice, test case

design is the most difficult to automatic. In functional testing, test case design is usually performed manually based on

the software requirement specification document. Functional requirements are often specified by the use case diagram

and the description of each use case is written in natural language in a given format. Therefore, the automatic

generation of test cases from the use case specification is still a huge challenge for the research community.

In order to automatically generate the test cases from the software functional requirements, we need to transfer

the use case description in the form of natural language into a formal specification. This specification can be used to

automatically identify different test cases when performing a use case. Test case information includes input parameters,

pre-conditions of test case performance, expected output, and test steps.

There have been many research focusing on the problem of how to formally specify use case towards

automatically generating test scenarios and test cases. For example, the authors of [2] used a markup language structure

to specify use case scenarios of a use case. This method focuses on the specification of the event flows of the use case.

However, it does not specify other information of the use case.

The authors of [3] proposed a contract to specify pre and post conditions when performing the use case. The

sequence diagram is used to describe use case scenarios. However, details of the method for determining the

constraints were not mentioned in the [3].

The authors of [4] specified each use case by a structured natural language. The scope of specification includes

pre- and post-conditions of the use cases and its set of interactive sequences that are described in the basic flow and the

alternate flows. Each interaction is specified by a sentence of the structured Subject Verb Object (SVO). The use case

scenarios are represented by activity or sequence diagram. The main drawback of this method is that a use case

description requires 2 structures: the one is in natural language and the other is an activity or sequence diagram. This

method is does not consider the relationship among the use cases.

The authors of [5] specified use case in a language named Restricted Use Case Modeling (RUCM). RUCM is

defined based on a template containing a set of restriction rules in the natural language. This language defines a set of

keywords for describing the flows of events. The drawbacks of the method include the use of natural language

processing (NLP) to identify use case information and incomplete specification of all the relationships among event

flows.

Other approaches of [6] - [9] used activity diagram to specify the use case behaviors. These researches focused

on specifying the action sequences and guard conditions on the transitions. The authors of [10] used activity diagram to

describe use case information, such as action sequences and transitions, guard conditions on transitions, and

<<include>> relations. However, this method does not specify other information and it also does not separately specify

2 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

actions. The authors of [11] used activity diagram to describe use case. This research defines a method for specifying

sequence interactions in the basic flows and alternate flows, and <<include>> and <<extend>> relations. However, this

method does not specify information about pre- and post-conditions, constraints on the input and output parameters

when executing an action or a transition.

However, none of the above researches clearly specifies the input and output parameters when executing a use

case. Some of these researches do not consider these parameters, while others, such as [5], require using a complex

extraction to extract the parameters from the OCL expressions. Further, there are no researches that propose to specify

exactly the allowed maximum repeated times of an action. There are also no research, which separately specifies actor

actions, the system actions, and actions that are performed outside of the system. Very few researches fully specify the

<<include>> and <<extend>> relations among the use cases.

In this paper, we expand the Use case Specification Language (USL) of [12] and [13] as version 1.0 to version

2.0 to describe use cases. We also define a formal specification method for software functional requirements towards

the automatical generation of system level test cases. In our method, software functional requirements are formally

specified by use case diagram and each use case is specified by a USL diagram. A use case diagram in USL describes

information more fully, which includes pre- and post-conditions, actor actions, system actions, actions that are

performed outside of the system, input and output parameters when performing use case, satisfy constraints on the

input and output parameters when performing an action or a transition, the numbers of maximum repeated times of an

action, <<include>> and <<extend>> relations among the use cases. To define USL, we build a meta-model and define

semantics for the language.

The idea of USL was first proposed in [12] as version 1.0. The concrete textual syntax of the USL is described

via BNF in [13]. In these works, we proposed methods and algorithms that automatically generate system level test

cases from USL diagram. In this paper, we present an expansion of the USL and the formalization of the language.

More specifically, we specify more actions that are performed outside of the system, and <<include>> and <<extend>>

relations among the use cases. In addition, we add some attributes into the Contract concept to specify input and output

parameters of use case, the maximum repeated times of an action, and effect on input parameters when executing an

action or a transition.

This paper is organized as follows: Section 2 introduces the motivation for developing USL. Section 3, we

present syntax and semantics of our USL language. Section 4 focuses on the methods to use USL language for

specifying functional requirements. We conclude the paper in Section 5.

II. MOTIVATION

In this paper, we use 3 use cases of the ATM system that are described in [15]. These use case are Insert card,

Withdraw, Help to motivate and illustrate USL. Use case Insert card allows a user to enter a PIN code when inserting a

bank card into the ATM machine. Use case Withdraw allows the user to withdraw money from the ATM machine. Use

case Help allows the user to request the display of help information when performing a transition. Use case Insert card

is included in the use case Withdraw. Use case Help is extended from the use case Withdraw. Figure 1 is a use case

model of the 3 use cases above. Details of each use case are described in Table 1.

As show in Figure 1, a case diagram shows

information about actors, use cases and relations. To

reduce complication and increase their reuse, the use

cases are reorganized using relations [16] as

<<include>>, <<extend>>, <<inheritance>> relations….

In this research, we focus on the <<include>> and

<<extend>> relations.

An <<include>> relation is considered to be a part of the basic flow. An extending use case can be triggered at

an extension point or in any actions when a trigger condition is satisfied. The <<extend>> relation is considered to be a

part of an alternate flow.

Table 1. Use case description of Withdraw, Insert card, and Help

Use Case UC1: Withdraw Alternate flows

Primary Actor: User 3a Show Help Button

 1. The actor press Help button, then the system calls

 the extending use case E1.

5a. The actor enters an invalid amount

 1. S: The system displays an error message “Amount is

 invalid, enter a valid amount” , return 3

6a. The balance isn't sufficient

 1. S: The system checks whether the user has

 Pre-Condition : Insert card use case was successful

Post-Condition: If the use case was successful the

system updates the balance, dispenses the cash, prints

a receipt for the user. If not, the system displays an

error message

Trigger: User clicks menu Withdraw

Basic flow

Figure 1. Use case diagram of Withdraw, Insert card, and Help

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh 3

1. A: The user-actor Inserts Card into ATM (include)

2. A: The actor click menu Withdraw

3. S: System shows Withdraw screen

4. A: The actor enters the amount she/he

 wants to withdraw

5. S: The system checks whether

 the value entered is valid

6. S: The system will retrieve the balance of the

 user then check the balance is sufficient to

 withdraw

7. S: The system updates the balance, dispenses

 the cash and finally prints a receipt for the user

8. The user receive money and card

overdraft permission. If has go next, if don‟t has

 go to 3b

 2. S. The system compares the amount required

 with the maximum allowed limit for overdraft, if

 the amount needed is within limit, go to 5, if not go

next to 3

 3. S. the system displays an error message “Amount is

 beyond Limit”

6b. the user has no overdraft permission

 4. S: an error message is displayed “ balance is

 not enough, No permission granted”

Extension Points

E1. Help about Withdraw: The extension point occurs at

step 2 of the basic flow if user presses Help button

Use Case UC2: ATM Insert Card Alternate flows
2a. Card not valid

1. S: Display message and reject card

4a. PIN not valid

1. S: Display message and ask for retry (twice)

4b. PIN invalid 3 times

 1. S: Eat card and exit

Primary Actor: User

Pre-condition : ATM System is ready

Pos-condition: payment is successful, credit card is

updated.

Trigger : User Insert Card into ATM

Use Case UC2: Help

Basic Flow Primary Actor: User

1. A: Insert card

2. S: Validates card and asks for PIN

3. A: Enters PIN

4. S: Validates PIN

5. S: Allows access to account

Pos-condition: Return before screen

Basic Flow

1. S: System Show Help screen

2. A: If users enter Close then show Close Help Screen

Table 1 is the 3 use cases in natural language using the format defined in [1]. This description includes the use

case‟s name, triggers, preconditions, post conditions, primary actors, secondary actors, basic flow, alternate flows and

exceptions.

When building system level test cases, testers read information about a use case to generate different test

scenarios. These test scenarios are generated based on the event flows of use case. A problem is that, we cannot always

identify all the test scenarios. For example, a use case containing loops in the event flows may have an infinite number

of execution paths. To ensure the coverage quality of the generated test cases, we need to indentify the test scenarios in

two cases. The first case is for precondition checking loops. This case has three test scenarios. The first scenario is loop

has no iterations. The second scenario is loop has one iteration. The third scenario is loop has n iterations (n>1) and n is

the maximum repeated times of some actions. The second case is for post-condition checking loops. This case has three

test scenarios. The first scenario is loop with one iteration. The second scenario is loop with two iterations. The

scenario is loop with n iterations (n>1) and n is the maximum repeated times of some actions. For example, in Insert

card‟s description, the loop of action 3 (Enter Pin) is described in alternate flow 4b, has the repeated max times of 3.

This is because when the user enters the wrong PIN code 3 times, the loop does not go back to action 3 but performs

action 4b inputting false PIN code 3 times, then the loop does not go back to action 3 but performing action 4b and end

the use case.

To identify different test cases, from a use case testers have to identify such information as input and output

parameters of the use case. The input parameters of the test cases are provided by actor, and system status. Take use

case description of Insert card as an example. The input parameters are: Card (ATM card), PinNumber (PIN code),

EPTimes (number of times to enter PIN code). Card and PinNumber are provided by user. EPTimes is the system

status. EPTimes status can change when performing an action or a transition. Before performing the action EnterPin,

this status is assigned the value 0. When performing EnterPin action, this status is increased to 1. At each action or

transition, the conditions concerning the input and output parameters need to be satisfied. From these conditions, we

can identify different input and output value sets for each test scenario. Moreover, in each test case, testers need to

identify the preconditions to perform the test case. Test steps are ordered actions that the actor takes when performing

a use case.

There have been a lot of researches focusing on using use case specification methods to automatically generate

test cases. However, there has been no research that produces a formal specification that contains all of the information

mentioned above. To address these challenges, we proposed a USL language for use case formal specification. USL

language is defined by extending the activity diagram with a Contract conception. The structure of activity diagram

specifies the event flows of the use case. We redefine actions in order to separately specify the actor actions, the system

4 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

actions and the actions that are outside of the system. The <<include>> and <<extend >> relations are defined as

abstract actions includedAction and extendingAction. The Contract concept associating with each action and transition

can be specified with more use case information, such as input and output parameters when performing the use case,

pre- and post-conditions of the use case, the constraints on input and output parameters at each step of performing

actions or transition and effect on input parameters when performing an action or transition. The USL language allows

us to specify a use case with a single diagram. The use case specification is as easy to understand as the user

requirement.

III. USL FORMAL SPECIFICATION LANGUAGE

In this section, we present the syntax and semantics of the USL version 2.0 as extended from USL language

considered as version 1.0 in the previous researches [12] [13]. The extension of version 2.0 compared to version 1.0 is

addition of some concepts: AgentAction, IncludedAction, ExtendingAction, ForkNode, JointNode. We also add such

new properties in the Contract as Inputs, Outputs, Maxloop, Effect. The USL provides the ability to specify information

on the use case more fully.

Concepts

USL is proposed on the basis of extending UML activity diagram. We give concept of Contract to describe the

constraints for steps of performing use case and providing more information for actions and moving flows. The

concepts in USL include:

- InitialNode and FinalNode correspond to start and finish nodes of use case. A use case has only an InitialNode

but may have a lot of FinalNodes. Concrete notation of InitialNode and FinalNode is shown as node 0 and node

9 in Figure 5.

- ActorAction, SystemAction, and AgentAction correspond to actor action, system action and actions outside the

system. The actions outside the system is actions that supplement information for use case. The semantics of use

case do not change where these actions can be specified or not (an example in use case Sale “Customers choose

goods and bring them to counter, ask to pay”). Concrete notation of ActorAction, SystemAction, AgentAction is

shown as nodes 2, 3, 8 in Figure 5.

- IncludedAction corresponds to another included use case which is included in a use case and is considered to be

an action of the basic flow. Concrete notation of IncludedAction is shown as node 1 in Figure 5.

- ExtendingAction corresponds to another extending use case which is extended at extending point and is

considered to be an action in an alternate flow of the use case. Concrete syntax of ExtendingAction is shown as

node E1 in Figure 5.

- DecisionNode is a decision node which has one incoming transition and multiple out going transitions, of which

only one will be taken. Condition declared in Contract associating on transition should be made to ensure that

only one transition can be taken. Concrete notation of DecisionNode is shown as node d1 in Figure 5.

- ForkNode is a control node that splits an incoming flow into multiple concurrent outgoing flows. Tokens

arriving at a fork are duplicated across each outgoing transition.

- JoinNode is a control node that synchronizes multiple transitions. If there is a token offered on all incoming

transitions, then a token is offered on the single outgoing transition.

- Transition is moving flow with directions between actions.

- Contract is a concept adding information to use case, actions and transitions.

- HasContract is a association between actions or transitions and Contract attached on it.

The Contract is structured as follows:

Contract Name

Inputs VariableName: Type

Outputs VariableName: Type

Pre Condition

Post Condition

MaxLoop Intvalue

Effect Expression

- Name is the name of the Contract;

- VariableName is the name of the input and output parameters when performing

use case. They are declared correspondingly in Inputs and Outputs;

- Condition is a logical or OCL expression clause declared corresponding in Pre

and Post. Conditions in Pre describe the constraints on the input parameters

corresponding to execute actions or transition. Conditions in Post describe

expected outputs that system returns when taking actions;

 - Intvalue declared in MaxLoop is integer value to specify maximum number of

repeated times of an action; Expression declared in Effect is the expression

which assigns new values for the input parameters when performing an action or

a transition.

We built abstract syntax of the USL by a metamodel as shown in Figure 2. The specifications as shown in

Figure 4 and 5 conform to the metamodel. The USL concepts are represented by graphical notation signed as in

Figure 5.

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh 5

We use a BNF-like (Backus –

Naur Form) notation to present the

USL grammar with the following

conventions. Terminal symbols are

bold strings enclosed in single quote.

The remaining strings are non-

terminals. The non-terminal of the first

production is the start symbol of the

grammar. Elements of a sequence are

separated by blanks, alternative

elements are separated by a “|”symbol.

Optional elements are closed in

brackets “[“ and “]”, Elements that can

occur zero or more times are enclosed

in braces “{“ and “}”. Parentheses “(“

and “)” are used to group elements.

Non-terminal symbols of the form

“xId” have the same definition as the non-terminal “id”.

USLLanguage ::= ‟USLDiagram‟ uId {USLDef}

USLDef ::= ‟Actions‟ listActions ‟Transitions‟ listTrans

 ‟Contracts‟ listContracts

listActions ::= (initialNode) {nodes} {finalNode}

initialNode ::= ‟InitialNode‟ iId {actionDef}

finalNode ::= ‟FinalNode‟ fId {actionDef}

nodes ::= aAction | sAction | agAction | iAction | eAction |

dNode | fNode| jNode

aAction ::= ‟ActorAction‟ aId {actionDef }

sAction ::= ‟SystemAction‟ sId {actionDef}

agAction ::= ‟AgentAction‟ agId { actionDef }

iAction ::= ‟IncludeAction‟ iId { actionDef }

eAction ::= ‟ExtendAction‟eId { actionDef }

dNode ::= ‟DecisionNode‟ dId {actionDef}

fNode ::= ‟ForkNode‟ fId {actionDef}

jNode ::= ‟JoinNode‟ jId {actionDef}

listTrans ::= {trans}

trans ::= ‟Transition‟ lId {tranDef}

listContract ::= {Contract}

Contract ::= ‟Contract‟ cId {ContractDef}

ContractDef ::= [‟Inputs‟ defineVar]

[‟Outputs‟ defineVar] [‟Pre‟ conditionEx]

[‟Post‟ conditionEx] [‟MaxLoop‟ intvalue]

 [‟MaxLoop‟ ‟TRUE‟ | ‟FALSE‟]

defineVar ::= (variable: type | ‟DataBase‟) { , variable:

type | ‟DataBase‟ }

type ::= ‟String‟ | ‟Int‟ | object | ‟Bool‟ | ‟Char‟ |

‟Double‟ | ennum

sentence ::= atomicSentence | sentence connective

sentence | quantifier variable,… sentence | ‟NOT ‟

sentence | ‟(‟ sentence ‟)‟;

connective ::= ‟AND‟ | ‟OR ‟ | ‟IMPLIES‟ |

‟EQUIVALENT‟;

quantifier ::= ‟‟ | ‟‟ ;

atomicSentence ::= term pt term | ‟TRUE‟ | ‟FALSE ‟

term ::= constant | variable;

variable ::= (‟a‟ .. ‟z‟ | ‟A‟ .. ‟Z‟ | ‟_‟) {‟a‟ .. ‟z‟

| ‟A‟ .. ‟Z‟ | ‟_‟ | ‟0‟ . .‟9‟}

pt::= ‟>‟ | ‟<‟ | ‟>=‟ | ‟<=‟ | ‟>‟ | ‟ | ‟‟ | ‟<>‟ | ‟=‟

constant::= {‟ ‟ | ‟*‟ | ‟+‟ | ‟-‟ | ‟\‟ | ‟.‟ | ‟0‟ . .‟9‟ |‟?‟ .. ‟~‟ }

function::= (‟a‟ .. ‟z‟ | ‟A‟ .. ‟Z‟ | ‟_‟) {‟a‟ .. ‟z‟ | ‟A‟ ..

‟Z‟ | ‟_‟ | ‟0‟ . .‟9‟}

intValue::= (‟1‟ . .‟9‟){ ‟0‟ . .‟9‟}

tranDef ::= ‟Out‟ iId | sId | aId | dId

 ‟In‟ fId | sId | aId | did

 [‟HasContract‟ cId]

actionDef ::= [‟Description‟ ‟“‟ actionDes ‟”‟]

 [‟HasContract‟ cId]

id ::= (‟a‟ .. ‟z‟ | ‟A‟ .. ‟Z‟ | ‟_‟) {‟a‟ .. ‟z‟ | ‟A‟ .. ‟Z‟ |

‟_‟ | ‟0‟ . .‟9‟}

actionDes ::= {‟ ‟ | ‟!‟ .. ‟~‟ | „0‟ .. „9‟ }

Formal semantics of USL

This section will provide formal semantics of the USL. The functional requirements are specified by some use

case diagrams. Each use case is specified by a graph in the USL, in which each use case scenario is an executable path

in the USL. The USL allows us to specify a use case description as a diagram. The USL diagram includes collection of

nodes which are connected by edges. It also includes a set of Contracts associated with nodes or edges. It is a kind of

directed graph. Tokens which indicate control flow along edges from source node to the target nodes driven by the

actions and contracts. The USL diagram has four kinds of modeling elements: nodes, edges, Contracts, Contract

relations.

Definition 1: A USL diagram is a seven-tuple D = (A, T, Fout, Fin, C ,a0, aL), where

- A = Aa ∪ As ∪ AI ∪ AE ∪ Ag ∪ {a0, aL} with:

o Aa = {a1, a2,…, am} is a finite set of actor actions (ActorAction);

o As = {s1, s2,…, sn} is a finite set of system actions (SystemAction); AI ={b1, b2, …, bz} is a finite set of

included use cases which is included into a use case (IncludedAction); AE = {d1, …, dy } is a finite set of

extending use cases which is extended from a use case (ExtendingAction);

Figure 2. Metamodel of USL

6 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

o Ag = {o1, …, oh} is a finite set of actions outside the system. The semantics of use case do not change

whether these actions can be specified or not.

- T = {t1, t2,…, tl} is a finite set of completion transitions.

- C = {c1, c2,…, ck} is a finite set of Contract associated with actions or transitions in the model, which ci is in

correspondence with aj A or tj T. ConA is a mapping from aj to ci so that ConA(aj)=ci. ConF is a mapping from tj

to ci so that ConF(tj) = ci

- Fout ⊆ A × T, Fin ⊆ T × A is the flow relation between the nodes and transitions. Fout is the transition coming out

from a node. Fin is the transition coming into a node.

- a0 is the initial node so that  t ∈ T & (a0, t) ∈ Fout, and if  t’ ∈ T & (t’, a0) ∈ Fin then  a  {w | (w, t’) Fout} | a 

AI & t’’ ∈ T & (t’’,a) ∈ Fin . That means that the start node must has flow come out, if any, the flow come in

initial node then must come from Included action and no transition come in IncludedAction.

- aL is the final node so that  t ∈ T & (t, aL) ∈ Fin, and t’∈ T & (aL, t’) ∈ Fout.

Definition 2: A use case scenario, u
s
U

S
, in a USL diagram D, can be defined as an execution path from the

InitialNode to the FinalNode consisting of activities and transitions. i.e.us, where us  US, us = e0  t0  e1  t1 

…  tx-1  ex with e0 = {a0} or e0 ∈ AI, ex = {aL}, and i(0<i<=x) then, and (ei-1,ti-1)  Fout and (ti-1, ei)  Fin and pre

of ConF(ti-1) and ConA(ei) is satisfied.US is the set of use case scenarios. Each u
s
 corresponds to a test scenario.

Definition 3: V is a set of all collective contracts on all use case scenarios US, in a USL diagram D, can be defined,

each v
s
 corresponds to a u

s
 is a set of Contracts in order where ⋃

 ∪ ∪ .

IV. FUNCTIONAL REQUIREMENTS SPECIFICATION METHOD USING USL

Figure 2 shows an overview of the formal method for specifying the software functional requirements using

USL. In this method, the software functional requirements are specified by a set of use case diagrams and for each use

case description is specified by a USL diagram. The use case diagram determines information about the use cases and

the performing sequence of use cases. The detailed USL specifications of each use case determine the use case

scenarios and the set of contracts of each use case scenario.

From the use case diagram, we can automatically determine the order in which the use cases are performed by

using the Graph traversal algorithms and by analyzing the relationship among the use cases. Developers will transform

the specification of each use case from the textual description into a USL diagram. We can use the Depth-first search

algorithm to automatically generate use case scenarios and the set of contracts of each scenario. From these, we can

define the test cases that have such information as input and output parameters, values of the input and expected output

parameters, preconditions to perform testing, and test steps.

The transformation from the use case textual description into USL model

The steps to transform the use case textual

description into USL diagram are stated as below.

1. Read the information in the use case diagrams

to get the information about the relationship

among the use cases.

2. Transform each use case textual description

format as in [1] to the USL diagram. The

included case uses and extending use cases are

transformed firstly. The use cases containing the

included use cases and extending use cases are

transformed later.

3. Each use case is specified by a USL diagram based on the following principles:

- Transfer each step in the basic flow and Alternative flows into the corresponding actions such as ActorAction,

SystemAction, AgentAction. The semantic of use case does not change the meaning whether the actions outside the

system transfer or not. Use InitialNode and FinalNode to specify the starting and the end point of the use case.

There is only one InitialNode but there can be lots of FinalNodes.

- If in each system action or actor action, there is the selection of the next actions add DecisionNode to specify.

- Use the Transition directional arrows to specify transition of the action.

- Add ForkNode and JoinNode at the beginning and the ending of concurrence actions.

- Use IncludedAction and ExtendingAction to specify the <<include>> and <<extend>> relation.

Figure 3. Overview of the proposed approach

Chu Thi Minh Hue, Nguyen Ngoc Binh, Dang Duc Hanh 7

- For each relation, the use template has a redefined structure. For instance, the <<include>> relation is considered as

an abstract action of a basic flow, while <<extend>> relation is considered as an abstract action of an alternate flow.

- The use case is extended at any action when satisfying the trigger conditions are regulated to specify as an

ExtendingAction with the transition coming out from initialNode.

- Using the Contract concept to specify information for each action and transition as below

 The contract associated to InitialNode allows us to specify the input and output parameters of use case. It is

corresponding declared in Inputs and Outputs. Preconditions of use case are declared in the pre.

 The contract associated to nodes or transitions, except for AgentAction nodes allows us to specify the

constraints on input and output parameters when performing actions or transitions. The constraints on input

parameters are described in pre. The constraints on output parameters described in post. The effects on input

parameters when performing an action or

a transition are declared in effect.

 If the action has limited times of

repetition, the limited times shall be

declared in MaxLoop, for example in

Contract C3 associated to action 3 in use

case Insert card as in Figure 4.

Case Study

The USL specifications of the three use

cases Insertcard, Help, Withdraw are shown in

Figure 4 and Figure 5 below. There, actions in the

basic flow and alternate flows are specified by

corresponding actions and added with controlling

nodes. The Contracts attached to actions and

transitions allow us to specify detailed information

when performing the use cases. In Figure 5, node 0

(InitialNode) is the starting point of the use case.

Node 9 (FinalNode) is the ending point of the use

case. The corresponding actions 2, 3, 8 are actions

of the actor (ActorAction), the system action

(SystemAction), and the agent action

(AgentAction). Action 1 is the IncludedAction

describing the <<include>> relation between Insert

card and Withdraw. Action E1 is the

ExtendingAction describing the <<extend>>

relation of Help from Withdraw. Contract C1

describes input and output parameters when

performing the use case declared in Inputs and

Outputs, and the precondition of the use case

declared in Pre. Contract C6 describes the

constraints on input parameters to allow the action

5a.1 to occur. These constraints are declared in

Pre. The expected outputs when performing action

2a are declared in Post. In Figure 4, Contract C2

describes the constraints for the transition from d

to 3. These constraints are declared in Pre. Before

executing action 3, the input parameter EPTimes =

0 is declared in Effect. Contract C3 describes

action 3 that is repeatable up to 3 times. The

maximum of repeated times is declared in

MaxLoop. Whenever action 3 is performed,

EPTimes will be increased to 1 and this is declared

in Effect.

Through these use case specification examples in the ATM system, we illustrated the different cases when

specifying use cases. These specifications will be the input for automatic test case generation form software functional

specifications. The method of automatical test case generation will be presented in our future work.

V. CONCLUSION

In this paper, we extended the USL formal specification language from version 1.0 to version 2.0 and proposed

a more complete method for specifying the software functional requirements. We solved the problems of other

researches which not being able to simultaneously specify information the following: pre- and post-conditions of use

Figure 6. USL use case specifications of Help and Insert Card

 Figure 5. USL use case specifications of Withdraw

 Figure 4. USL use case specifications of Help and Insert Card

8 A METHOD TO SPECIFY SOFTWARE FUNCTIONAL REQUIREMENTS FOR SYSTEM TEST CASE GENERATION

case, the relations with the use cases, input and output parameters when performing use case, the maximum number of

repetitions of an action, pre and post conditions when performing an action or a transition. Our method is simple and

close to the natural language descriptions. In addition, USL specifications can be used to automatically generate test

cases. In the future, we will continue to research and improve the method of automatic generation of test cases to

achieve better quality. We also aim set up the algorithms for generating the textual form test case.

REFERENCES

[1] A. Cockburn, Writing Effective Use Cases.: Addison-Wesley, 2001.

[2] Nhuan D, Lai V. Y. N, Tho T. Q, and Thuan D. L, "A framework for automatic construction of test scenarios from use-cases,"

in Ho Chi Minh City Software Testing Conference January 2015, Ho Chi Minh, 2015.

[3] C. Nebut, F. Fleurey, Y. Le Traon, and J. M. Jezequel, "Automatic test generation: A use case driven approach," IEEE

Transactions on Software Engineering, vol. 32, pp. 140-155, 2006.

[4] M. Smialek and T.Straszak, "Automating acceptance testing with tool support," in Computer Science and Information Systems

(FedCSIS), 2014 Federated Conference on, 2014, pp. 1569-1574.

[5] C. Wang, F.Pastore, A. Goknil, L. Briand, and Z. Iqbal, "Automatic generation of system test cases from use case

specifications," in In Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015, New

York, 2015, pp. 385-396.

[6] M. Chen, P. Mishra, and D. Kalita, "Coverage-driven automatic test generation for uml activity diagrams," in ” Proceedings of

the 18th ACM Great Lakes Symposium on VLSI, GLSVLSI '08, USA, 2008, pp. 139-142.

[7] R. K. Swain, V. Panthi, and P. K. Behera, "Generation of test cases using activity diagram," International Journal of Computer

Science and Informatics, vol. 3, 2013.

[8] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, "A proposed test case generation technique based on activity

diagrams," International Journal of Engineering & Technology IJET-IJENS, vol. 11 , 2011.

[9] N. N. Patil and P. E. Patel, "Testcases formation using uml activity diagram," in Communication Systems and Network

Technologies (CSNT), 2013.

[10] Jes´ us M. Almendros-Jim´enez and Luis Iribarne, "Describing Use Cases with Activity Charts," in Lecture Notes in Computer

Science.: Springer Berlin Heidelberg, 2005, pp. 141-159.

[11] S. Tiwari and A.l Gupta, "An approach of generating test requirements for agile software development," in Proceedings of the

8th India Software Engineering Conference, ISEC '15, New York, 2015, pp. 186-195.

[12] C. T. M. Hue, D. D. Hanh, N. N. Binh, "A Method to Generate Test Cases from Use Cases," in Fair'8, Ha Noi, 2015, pp. 590-

599.

[13] C. T. M. Hue, N. N. Binh, and D. D. Hanh, "Automatic Test-case Generation from Detailed Use-case Specification for System

Testing," submit to Research, Development and Application on Information and Communication Technology, June 2016.

[14] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach. Redwood, USA: Addison Wesley Longman

Publishing Co, 2004.

[15] IBM, Object-Oriented Analysis and Design with UML2.: IBM Corporation, 2006.

[16] Ivar Jacobson and Pan-Wei Ng, Aspect-Oriented Software Development with Use Cases. Redwood, USA: Addison-Wesley,

2004.

[17] Richard C. Gronback, Eclipse Modeling Project A Domain-Specific Language.: Addison-Wesley, 2009.

[18] V. Panthi and D.P. Mohapatra, "Automatic test case generation using sequence diagram," in International Journal of Applied

Information Systems, New York, 2012, pp. 277-284.

PHƯƠNG PHÁP ĐẶC TẢ CHỨC NĂNG PHẦN MỀM

ĐỂ SINH CÁC CA KIỂM THỬ HỆ THỐNG

Chu Thị Minh Huệ, Nguyễn Ngọc Bình, Đặng Đức Hạnh

TÓM TẮT — Trong bài báo này, chúng tôi mở rộng ngôn ngữ đặc tả ca sử dụng (USL) từ phiên bản 1.0 sang phiên bản 2.0 cho

phép đặc tả hình thức mô tả của từng ca sử dụng ở mức yêu cầu người dùng chỉ với một mô hình duy nhất, mà không sử dụng các

thiết kế chi tiết của ca sử dụng. Chúng tôi cũng nêu hướng dẫn phương pháp đặc tả hình thức các yêu cầu chức năng. Các đặc tả

yêu cầu có thể được sử dụng để sinh tự động các ca kiểm thử mức hệ thống. Ngôn ngữ USL được mở rộng từ biểu đồ hoạt động

trong UML và thêm vào khái niệm Contract nhằm đặc tả đầy đủ hơn các thông tin khi thực hiện ca sử dụng như: chuỗi các hành

động trong các luồng sự kiện, các tham số đầu vào và đầu ra khi thực hiện ca sử dụng, tiền điều kiện và hậu điệu kiện thực hiện ca

sử dụng, điều kiện ràng buộc trên dữ liệu đầu vào và đầu ra tại mỗi hành động hoặc luồng chuyển, mối quan hệ <<include>> và

<<extend>>, số lần lặp tối đa của một hành động, hiệu ứng thay đổi giá trị tham số đầu vào khi thực hiện một hành động hoặc

luồng chuyển. Chúng tôi xây dựng một MetaModel mô tả cú pháp trừu tượng, xây dựng cú pháp cụ thể dạng văn bản bằng BNF và

định nghĩa ngữ nghĩa hình thức cho ngôn ngữ.

