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ABSTRACT — In this paper, by incorporating knowledge of the physical system under control, we proposed the new method to 

detect computer attacks that change the behavior of the targeted industrial control system. By using knowledge of the physical 

system we are able to focus on the final objective of the attack, and not on the particular mechanisms of how vulnerabilities are 

exploited, and how the attack is hidden. We also analyze the safety of our solution by exploring the effects of stealthy attacks, and by 

hopping that automatic attack-response mechanisms will not drive the system to an unsafe state. In our paper, we proposed two 

module: one for changing detection by sequential detection and CUSUM statistic, other one for responsing attacks by linear model 

predictive control algorithm to keep the system in safety state before human operators can control the system. 

Keywords —  Linear model predictive control, control system, model algorithmic control, dynamic matrix control, attack. 

I. INTRODUCTION 

Networked industrial control systems are computer-based systems that monitor and control physical processes. 

These systems represent a wide variety of networked information technology (IT) systems connected to the physical 

world. Depending on the application, these control systems are also called Process Control Systems (PCS), Supervisory 

Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS) or Cyber-Physical Systems 

(CPS). Control systems are usually composed of a set of networked agents, consisting of sensors, actuators, control 

processing units such as programmable logic controllers (PLCs), and communication devices. Modern day industrial 

control systems have a multi-layer structure [11]. The overall objectives of such a control structure are: (1) to maintain 

safe operational goals by limiting the probability of undesirable behavior, (2) to meet the production demands by 

keeping certain process values within prescribed limits, (3) to maximize production profit. Several control applications 

can be labeled as safety-critical: their failure can cause irreparable harm to the physical system being controlled and to 

the people who depend on it. SCADA systems, in particular, perform vital functions in national critical infrastructure 

systems, such as electric power distribution, oil and natural gas distribution, water and waste-water treatment, and 

transportation systems. The disruption of these control systems could have a significant impact on public health, safety 

and lead to large economic losses. Control systems have been at the core of critical infrastructures, manufacturing and 

industrial plants for many decades, and yet, there have been few confirmed cases of cyber attacks. Control systems, 

however, are now at a higher risk to computer attacks because their vulnerabilities are increasingly becoming exposed 

and available to an ever-growing set of motivated and highly-skilled attackers. 

An accurate assessment of potential losses under cyber-attacks is a pre-requisite for any risk management program. 

Risk management is the process of shifting the odds in your favor by finding among all possible alternatives, the one 

that minimizes the impact of uncertain events. Probably the best well known risk metric is the average loss 

[L] i ii
R L p   , where Li is the loss if event i occurs, and pi is the probability that event i occurs. Other risk 

metrics try to get more information about the probability distribution of the losses, and not only its mean value ( R ). 

For example the variance of the losses 2[L ]-RR   is very useful in finance since it gives more information to risk 

averse individuals. This is particularly important if the average loss is computed for a large period of time (e.g. 

annually). If the loss is considered every time there is a computer event then we believe the average loss by itself 

provides enough risk information to make a rational decision. 

In this paper, we focus on attacks on sensor networks and the effects they have on the process control system. 

Therefore pi denotes the likelihood that an attacker will compromise sensor i, and Li denotes the losses associated with 

that particular compromise. To simplify our presentation we assume that pi is the same for all sensors, therefore our 

focus in the remaining of this paper is to estimate the potential losses Li. The results can then be used to identify high 

priority sensors and to invest a given security budget in the most cost effective way. 

II. DETECTION OF ATTACKS ON NETWORED INDUSTRIAL CONTROL SYSTEMS 

A. Attack models 

We consider the case when the state of the system is measured by a sensor network of l sensors with measurement 

vector  1 2( ) ( ), ( ),..., ( )ly k y k y k y k , where ( )iy k  denotes the measurement by sensor i at time k. All sensors have a 

dynamic range that defines the domain of yi for all k. That is, all sensors have defined minimum and maximum values 
min max, ( ) ,i i ik y k y y   

. Let min max,i i iY y y   
. We assume each sensor has a unique identity protected by a 
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cryptographic key. Let ( ) ly k  denote the received measurements by the controller at time k. Based on these 

measurements the control system defines control actions to maintain certain operational goals. If some of the sensors 

are under attack, ( )y k may be different from the real measurement ( )y k ; however, we assume that the attacked signals 

( )iy k  also lie within 
iY  (signals outside this range can be easily detected by fault-tolerant algorithms). 

Let  ,...,a s eK k k represent the attack duration; between the start time ks and stop time ke of an attack. A general 

model for the observed signal is the following:  

 
 

( )
( )

, ( )

i a

i

i a i i

y k fork K
y k

a k fork K a k Y


 

 

 (1) 

where ai(k) is the attack signal. This general sensor attack model can be used to represent integrity attacks and DoS 

attacks. In an integrity attack we assume that if attackers have compromised a sensor, then they can inject any arbitrary 

value, therefore in this case, ai(k) is some arbitrary non-zero value. In a DoS attack, the controller will notice the lack 

of new measurements and will react accordingly. An intuitive response for a controller to implement against a DoS 

attack is to use the last signal received: ai(k) = yi(ks), where yi(ks) is the last measurement received before the DoS 

attack starts. 

B. Linear model predictive control 

Linear Model predictive control (LMPC) algorithms employ linear or linearized models to obtain the predictive 

response of the controlled process. These algorithms include the Model Algorithmic Control (MAC)[12], the Dynamic 

Matrix Control (DMC)[3] and the Generalized Predictive Control (GPC)[2]. These algorithms are all similar in the 

sense that they rely on process models to predict the behavior of the process over some future time interval, and the 

control calculations are based on these model predictions. The models used for these predictions have usually been 

derived from linear approximations of the process or experimentally obtained step response data. A survey of theory 

and applications of such algorithms have been reported in [6]. 

A classical autoregressive moving average (ARX) model structure that relates the plant output with the present and 

past plant input-output can be used to formulate a predictive model. The model parameters can be determined a priori 

by using the known input-output data to form a fixed predictive model or these parameters are updated at each 

sampling time by an adaptive mechanism. The one step ahead predictive model can be recursively extended to obtain 

future predictions for the plant output. The minimization of a cost function based on future plant predictions and 

desired plant outputs generates an optimal control input sequence to act on the plant. The strategy is described as 

follows. 

1. Predictive model 

The relation between the past input-output data and the predicted output can be expressed by an ARX model of the 

form 
1 1( 1) ( ) ... ( 1) ( ) ... ( 1)ny nuy t a y t a y t ny bu t b u t nu            (2) 

where y(t) and u(t) are the process and controller outputs at time t, y(t+1) is the one-step ahead model prediction at 

time t, a‟s and b‟s represent the model coefficients and the nu and ny are input and output orders of the system. 

2. Model identification 

The model output prediction can be expressed as ( 1) ( )m my t x t   (3) 

Where 
1 1[ ... ... ]ny nu      

and ( 1) [ ( )... ( 1) ( )... ( 1)]T

mx t y t y t ny u t u t nu       (4) 

with  and  as identified model parameters. 

One of the most widely used estimators for model parameters and covariance is the popular recursive least squares 

(RLS) algorithm[7]. The RLS algorithm provides the updated parameters of the ARX model in the operating space at 

each sampling instant or these parameters can be determined a priority using the known data of inputs and outputs for 

different operating conditions. The RLS algorithm is expressed as 

 
m m m

m m m m

( 1) ( ) ( )[ ( 1) ( 1)]

K(t)=P(t)x (t+1)/[1 x (t+1) ( )x (t+1)]

( 1) 1/ [ ( ) {( ( )x (t+1)x (t+1) ( )) / (1 x (t+1) ( )x (t+1))}]

m

T

T T

t t K t y t y t

P t

P t P t P t P t P t

 



     



   

 (5) 

where (t) represents the estimated parameter vector,  is the forgetting factor, K(t) is the gain matrix and P(t) is the 

covariance matrix. 



Nguyen Dao Truong, Le My Tu 11 

3. Controller formulation 

The N time steps ahead output prediction over a prediction horizon is given by 

 
1 1( ) ( 1) ... ( ) ( 1) ... ( ) ( )l ny nuy t N a y t N a y t ny N u t N u t nu N err t                  (6) 

where yl(t+N) represent the model predictions for N steps and err(t) is an estimate of the modeling error which is 

assumed as constant for the entire prediction horizon. If the control horizon is m, then the controller output, u after m 

time steps can be assumed to be constant. 

An internal model is used to eliminate the discrepancy between model and process outputs, error(t), at each 

sampling instant ( ) ( ) ( )merror t y t y t   (7) 

where ym(t) is the one-step ahead model prediction at time (t-1). The estimate of the error is then filtered to produce 

err(t) which minimizes the instability introduced by the modeling error feedback. The filter error is given by 

 
( ) (1 ) ( 1) ( )f ferr t K err t K err t   

 (8) 

where Kf is the feedback filter gain which has to be tuned heuristically. 

Back substitutions transform the prediction model equations into the following form 

,1 , , 1 , 1 ,1 ,( ) ( ) ... ( 1) ( 1) ... ( 1) ( ) ... ( 1) ( )p N N ny N ny N ny nu N N m Ny t N f y t f y t ny f u t f u t nu g u t g u t m e err t                     (9) 

The elements f, g and e are recursively calculated using the parameters  and  of (4). The above equations can be 

written in a condensed form as ( ) ( ) ( ) ( )Y t FX t GU t Eerr t    (10) 

Where ( ) [ ( 1)... ( )]T

l lY t y t y t N   , ( ) [ ( ) ( 1)... ( 1) ( 1)... ( 1)]TX t y t y t y t ny u t u t nu       , ( ) [ ( )... ( 1)]TU t u t u t m  
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1[ ... ]T

NE e e   

In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a vector of past plant and 

controller outputs and U(t) is a vector of future controller outputs. If the coefficients of F, G and E are determined then 

the transformation can be completed. The number of columns in F is determined by the ARX model structure used to 

represent the system, where as the number of columns in G is determined by the length of the control horizon. The 

number of rows is fixed by the length of the prediction horizon. 

Consider a cost function of the form  

 2 2

1 1 1 1

[ ( ) ( )] [ ( 1)] [ ( ) ( )] [ ( ) ( )] ( ) ( )
N m N m

T T

l

i i i i

J y t i w t i u t i Y t W t Y t W t U t U t 
   

               (11) 

where W(t) is a setpoint vector over the prediction horizon  

 ( ) [ ( 1)... ( )]TW t w t w t N    (12) 

The minimization of the cost function, J gives optimal controller output sequence 

 
1( ) [ ] [ ( ) ( ) ( )]T TU t G G I G W t FX t Eerr t      (13) 

The vector U(t) generates control sequence over the entire control horizon. But, the first component of U(t) is 

actually implemented and the whole procedure is repeated again at the next sampling instant using latest measured 

information. 

Linear model predictive control involving input-output models in classical, adaptive or fuzzy forms is proved useful 

for controlling processes that exhibit even some degree of nonlinear behavior [5], [15], [16]. 

In this paper, we used combined system model TE-PCS (Tennessee-Eastman Process Control System) with loop 

control laws PI which proposed by Ricker[13]. General processing and control processes described in Fig 1. 

C. Detection of attacks 

Detecting attacks to control systems can be formulated as an anomaly-based intrusion detection problem [4]. One 

big difference in control systems compared to traditional IT systems, is that instead of creating models of network 

traffic or software behavior, we can use a representative model of the physical system. The intuition behind this 
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approach is the following: if we know how the output sequence of the physical system, y(k), should react to the control 

input sequence, u(k), then any attack to the sensor data can be potentially detected by comparing the expected output 

ˆ( )y k  with the received (and possibly compromised) signal ( )y k . Depending on the  quality of our estimate ˆ( )y k we 

may have some false alarms. 
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Sensor y3
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F4
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F4
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Fig 1.  Typical Industrial Control System 

To formalize the anomaly detection problem, we need (1) a model of the behavior of the physical system, and (2) 

an anomaly detection algorithm. In section II.B we discuss our choice of linear model predictive control as an 

approximation of the behavior of the physical system. In this section, we describe change detection theory and the 

detection algorithm we use a nonparametric cumulative sum (CUSUM) statistic. 

The physical-model-based attack detection method presented in this paper can be viewed as complementary to 

intrusion detection methods based on network and computer systems models. Because we need to detect anomalies in 

real time, we can use results from sequential detection theory to give a sound foundation to our approach. Sequential 

detection theory considers the problem where the measurement time is not fixed, but can be chosen online as and when 

the measurements are obtained. Such problem formulations are called optimal stopping problems. Two such problem 

formulations are: sequential detection (also known as sequential hypothesis testing), and quickest detection (also 

known as change detection). A good survey of these problems is given by Kailath and Poor [10]. 

In optimal stopping problems, we are given a time series sequence z(1), z(2),..., z(N), and the goal is to determine 

the minimum number of samples, N, the anomaly detection scheme should observe before making a decision dN 

between two hypotheses: H0 (normal behavior) and H1 (attack). The difference between sequential detection and 

change detection is that the former assumes the sequence z(i) is generated either by the normal hypothesis (H0), or by 

the attack hypothesis (H1). The goal is to decide which hypothesis is true in minimum time. On the other hand, change 

detection assumes the observation z(i) starts under H0 and then, at a given ks it changes to hypothesis H1. Here the goal 

is to detect this change as soon as possible. Both problem formulations are very popular, but security researchers have 

used sequential detection more frequently. However, for our attack detection method, the change detection formulation 

is more intuitive. To facilitate this intuition, we now briefly describe the two formulations. 

1. Sequential Detection 

Given a fixed probability of false alarm and a fixed probability of detection, the goal of sequential detection is to 

minimize the number of observations required to make a decision between two hypotheses. The solution is the classic 

sequential probability ratio test (SPRT) of Wald[17] (also referred as the threshold random walk (TRW) by some 

security papers). SPRT has been widely used in various problems in information security such as detecting 

portscans[9], worms[14], proxies used by spammers[18], and botnets[8]. 

Assuming that the observations z(k) under Hj are generated with a probability distribution pj , the SPRT algorithm 

can be described by the following equations: 

 
1

0

( ( ))
( 1) log ( )

( ( ))

inf {n:S(n) [ , ]}
n

p z k
S k S k

p z k

N L U

  

 

 (14) 

starting with S(0) = 0. The SPRT decision rule dN is defined as: 1

0

 if  ( )

 if  ( )
N

H S N U
d

H S N L


 



 (15) 
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where ln
1

b
L

a



and 

1
ln

b
U

a


 and where a is the desired probability of false alarm and b is the desired probability 

of missed detection (usually chosen as small values). 

2. Change Detection 

The goal of the change detection problem is to detect a possible change, at an unknown change point ks. Cumulative 

sum (CUSUM) and Shiryaev-Roberts statistics are the two most commonly used algorithms for change detection 

problems. In this paper, we use the CUSUM statistic because it is very similar to the SPRT.  

Given a fixed false alarm rate, the CUSUM algorithm attempts to minimize the time N (where N > ks) for which the 

test stops and decides that a change has occurred. Let S(0) = 0. The CUSUM statistic is updated according to 

 1

0

( ( ))
( 1) log ( )

( ( ))

p z k
S k S k

p z k



 
   

 

 (16) 

where (a)
+
 = a if a ≥ 0 and zero otherwise. The stopping time is: inf { : ( ) }

n
N n S n    (17) 

for a given threshold τ selected based on the false alarm constraint. 

We can see that the CUSUM algorithm is an SPRT test with L = 0, U = τ , and whenever the statistic reaches the 

lower threshold L, it restarts. We now describe how to adapt the results of change detection theory to the particular 

problem of detecting compromised sensors. In the following, we use the subscript i to denote the sequence 

corresponding to sensor i.  

One problem that we have in our case is that we do not know the probability distribution for an attack p1. In 

general, an adaptive adversary can select any arbitrary (and  possibly) non-stationary sequence zi(k). Assuming a fixed 

p1 will thus limit our ability to detect a wide range of attacks. 

To avoid making assumptions about the probability distribution of an attacker, we use ideas from nonparametric 

statistics. We do not assume a parametric distribution for p1 and p0; instead, only place mild constraints on the 

observation sequence. One of the simplest constraints is to assume the expected value of the random process Zi(k) that 

generates the sequence zi(k) under H0 is less than zero (  0 0iZ  ) and the expected value of Zi(k) under H1 is greater 

than zero (  1 0iZ  ). 

To achieve these conditions let us define ˆ( ) ( ) ( )i i i iz k y k y k b    (18) 

where bi is a small positive constant chosen such that
0

ˆ( ) ( ) 0i i iy k y k b       (19) 

The nonparametric CUSUM statistic for sensor i is then: ( ) ( ( 1) ( )) , (0) 0i i i iS k S k z k S     (20) 

and the corresponding decision rule is 1

,

0

   if  ( )
( ( ))

        

i i

N i i

H S k
d d S k

H otherwise



  


 (21) 

where τi is the threshold selected based on the false alarm rate for sensor i. 

Following [1], we state the following two important results for Equation (20)-(21): 

 The probability of false alarm decreases exponentially as the threshold τi increases, 

 The time to detect an attack, (Ni − ks,i)
+
, is inversely proportional to bi. 

D. Stealthy Attacks 

A fundamental problem in intrusion detection is the existence of adaptive adversaries that will attempt to evade the 

detection scheme; therefore, we now consider an adversary that knows about our anomaly detection scheme. We take a 

conservative approach in our models by assuming a very powerful attacker with knowledge of: (1) the exact linear 

model that we use (i.e., matrices A, B, and C), the parameters (τi and bi), and (3) the control command signals. Such a 

powerful attacker may be unrealistic in some scenarios, but we want to test the resiliency of our system to such an 

attacker to guarantee safety for a wide range of attack scenarios. 

The goal of the attacker is to raise the pressure in the tank without being detected (i.e., raise the pressure while 

keeping the statistic he controls below the corresponding  threshold τi). We model three types of attacks: surge attacks, 

bias attacks and geometric attacks. Surge attacks model attackers that want to achieve maximum damage as soon as 

they get access to the system. A bias attack models attackers that try to modify the system discretely by adding small 

perturbations over a large period of time. Finally, geometric attacks model attackers that try to shift the behavior of the 
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system very discretely at the beginning of the attack and then maximize the damage after the system has been moved to 

a more vulnerable state. 

E. Surge Attacks 

In a surge attack the adversary tries to maximize the damage as soon as possible, but when the statistic reaches the 

threshold, it then stays at the threshold level: Si(k) = τ for the remaining time of the attack. To stay at the threshold, the 

attacker needs to solve the following quadratic equation: 

  
2

ˆ( ) ( ) ( )i i i i iS k y k y k b      (22) 

The resulting attack (for y2 and y1) is: 
min                                 if  S ( 1)

( )
ˆ ( ) ( )   if ( 1)

i i i

i

i i i i i i

y k
y k

y k b S k S k



 

  
 

    

 (23) 

For y3 we use  3

3 3

min

3 3

3

3 3 3 3

                                if  S ( )
( )

ˆ ( ) ( )  if ( )

y

y y

y k
y k

y k b S k S k



 

 
 

   

 (24) 

F. Bias Attacks 

In a bias attack the attacker adds a small constant ci at each time step. 

 , ,
ˆ

i k i k i iy y c Y    (25) 

In this case, the nonparametric CUSUM statistic can be written as 
1

0

ˆ( ) ( ) ( )
n

i i i i

k

S n y k y k nb




    (26) 

Assuming the attack starts at time k = 0 and assuming the attacker wants to be undetected for n time steps the 

attacker needs to solve the following equation 
1

0

n

i i i

k

c nb




   (27) 

Therefore ci = τi/n + b. This attack creates a bias of τi/n + bi for each attacked signal. 

This equation shows the limitations of the attacker. If an attacker wants to maximize the damage (maximize the bias 

of a signal), the attacker needs to select the smallest n it can find. Because i iy Y  this attack reduces to an impulse 

attack. 

If an attacker wants to attack for a long time, then n will be very large. If n is very large then the bias will be 

smaller. 

G. Geometric Attacks 

In a geometric attack, the attacker wants to drift the value very slowly at the beginning and maximize the damage at 

the end. This attack combines the slow initial drift of the bias attack with a surge attack at the end to cause maximum 

damage. 

Let α ∈ (0, 1). The attack is ˆ( ) ( ) n k

i i i iy k y k     (28) 

Now we need to find α and β such that Si(n) = τi.  

Assume the attack starts at time k = 0 and the attacker wants to be undetected for n time steps. The attacker then 

needs to solve the following equation: 
1

0

n
n k

i i i i

k

nb 






   (29) 

This addition is a geometric progression 
1 1

1

1
0 0

1
( )

1

nn n
n k n k i

i i i i i i

k k i


   



 
 


 


 


   (30) 

By fixing α the attacker can select the appropriate β to satisfy the above equation. 

III. RESPONSE TO ATTACKS 

A comprehensive security posture for any system should include mechanisms for prevention, detection, and 

response to attacks. Automatic response to computer attacks is one of the fundamental problems in information 

assurance. While most of the research efforts found in the literature focus on prevention (authentication, access 

controls, cryptography etc.) or detection (intrusion detection systems), in practice there are quite a few response 

mechanisms. 
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Given that we already have an estimate for the state of the system (given by a linear model predictive control 

module), a natural response strategy for control systems is to use this estimate when the anomaly detection statistic 

fires an alarm. Fig 2 shows our proposed architecture. Specifically: for sensor i, if Si(k) > τi, the CDM (Change 

Detection Module) replaces the sensor measurements ( )iy k with measurements generated by the linear model 

predictive control module ˆ ( )iy k (that is the controller will receive as input ˆ ( )iy k  instead of ( )iy k ). Otherwise, it treats 

( )iy k  as the correct sensor signal. 

Sensors+

Environment 

Disturbance Network Attacks

Controller

Linear model 

predictive 

control Module

u(k)

u(k+1)

w(k)

y(k)

u(k)

( )y k

ˆ( )y k

CDM

Network Media

 

Fig 2. The proposed attack detection model 

In our proposed detection and response architecture which described in Fig. 2, we hope to make sure that if there is 

a false alarm, controlling the system by using the estimated values from the linear model predictive control system will 

not cause any safety concerns. The automatic response mechanism works well when we are under attack (with 

2 20.5*y y ). Fig.3 and Fig.4 shows that when an attack is detected, the response algorithm manages to keep the 

system in a safe state. Similar results were obtained for all detectable attacks.  

While our attack response mechanism is a good solution when the alarms are indeed an indication of attacks, Our 

main concern in this section is the cost of false alarms. To address these concerns we ran the simulation scenario 

without any attacks 500 times; each time the experiment ran for 20 hours. As expected, with the parameter set 
1

5,y 

2
1000,y 

3
20y   our system did not detect any false alarm; therefore we decided to reduce the detection threshold to 

1
1,y 

2
100,y   

3
2y   and run the same experiments again. We can see that while a false response mechanism 

increases the pressure of the tank, it never reaches unsafe levels. The maximum pressure obtained while controlling the 

system based on the linear model was 278 kPa, which is in the same order of magnitude than the normal variation of 

the pressure without any false alarm (276 kPa). 

In our case, even if the system is kept in a safe state by the automated response, our response strategy is meant as a 

temporary solution before a human operator responds to the alarm. Based on our results we believe that the time for a 

human response can be very large. 

 

Fig 3. Without Change Detection Module (CDM) 

 

 

Fig 4. CDM detects and response to the attack at t=5.1 

IV.  CONCLUSION 

In this paper we identified some research challenges for securing control systems. We showed that by incorporating 

a physical model of the system we were able to identify the most critical sensors and attacks. We proposed the use of 

automatic response mechanisms based on linear model predictive control of the system. Automatic responses may be 

problematic in some cases (especially if the response to a false alarm is costly); therefore, we would like to emphasize 

that the automatic response mechanism should be considered as a temporary solution before a human investigates the 
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alarm. A full deployment of any automatic response mechanism should take into consideration the amount of time in 

which it is reasonable for a human operator to respond, and the potential side effects of responding to a false alarm. 

However, as a word of caution, large scale control system designs are often not to resilient by design and may 

become prey to such stealth attacks if sufficient resilience is not built by design in the first place. Thus, our ideas 

become all the more relevant for operational security until there is a principled way of designing fully attack resilient 

control structures and algorithms (which by itself is a very challenging research endeavor and may not offer a cost 

effective design solution). By our proposed solution, we hope keep the system in safety state before the human 

operators can control the system and and no catastrophes occur. 
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MỘT PHƯƠNG PHÁP MỚI CHỐNG TẤN CÔNG TRONG MẠNG  
ĐIỀU KHIỂN CÔNG NGHIỆP 

Nguyễn Đào Trường, Lê Mỹ Tú 

TÓM TẮT— Trong bài báo này, bằng cách kết hợp những kiến thức về điều khiển hệ thống vật lý, chúng tôi đề xuất một phương 

pháp mới để phát hiện các tấn công máy tính mà chúng làm thay đổi hành vi của hệ thống điều khiển công nghiệp. Bằng việc sử 

dụng những kiến thức về hệ thống vật lý chúng tôi tập trung vào phân tích các hình thức tấn công, những lỗ hổng bị khai thác không 

theo những cơ chế đặc thù mà từ đó kẻ tấn công có thể ẩn lấp. Chúng tôi phân tích sự an toàn của giải pháp đề xuất thông qua thực 

thi các hình thức tấn công và hy vọng giải pháp phản ứng tấn công tự động sẽ đưa hệ thống về trạng thái an toàn trước các tấn 

công. Trong bài báo này, chúng tôi đề xuất sử dụng hai module: một cho phát hiện những thay đổi bằng phương pháp phát hiện 

tuần tự và thống kê CUSUM, còn lại để phản ứng lại các tấn công bằng thuật toán điều khiển tiên đoán tuyến tính để giữ cho hệ 

thống ở trạng thái an toàn trước khi người vận hành có thể kiểm soát được tình hình. 


