
Kỷ yếu Hội nghị Khoa học Quốc gia lần thứ IX “Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR'9)”; Cần Thơ, ngày 4-5/8/2016

DOI: 10.15625/vap.2016.00098

USING DISTRIBUTED WORD REPRESENTATIONS IN GRAPH-BASED
DEPENDENCY PARSING FOR VIETNAMESE

Thi-Luong Nguyen
1
, My-Linh Ha

2
, Phuong Le-Hong

2,3
, Thi-Minh-Huyen Nguyen

2

1
Da Lat University, Lam Dong, Vietnam

luongnt@dlu.edu.vn
2
VNU University of Science, Hanoi, Vietnam

phuonglh@vnu.edu.vn, huyenntm@vnu.edu.vn, halinh.hus@gmail.com
3
FPT Research, Hanoi, Vietnam

ABSTRACT— Dependency parsing has attracted many natural language processing research groups in recent years. Dependency

syntax is a form of sentence representation which has many applications in problems such as question answering system, information

extraction, text summarization, machine translation ... Currently, there are many approaches for dependency parsing and they have

achieved high accuracy for different languages. For Vietnamese, our research group has used Skip-gram and GloVe model to produce

distributed word representations. Then we used this feature in transition-based dependency parsing system. In this paper, we propose to

use distributed word representations in graph-based dependency parsing system with MSTParser.

Keywords— Dependency syntax, Vietnamese syntax, Vietnamese dependency parsing, distributed word representations.

I. INTRODUCTION

Dependency parsing has become an important and complex problem in natural language processing. In recent

years, this problem has attracted many research groups and achieved high accuracy for English, French, Chinese,… For

Vietnamese, some groups developed and achieved quite satisfactory accuracy [6, 7, 15]. However, Vietnamese has

neither an inconsistent dependency label set nor a perfect tool for parsing. Meanwhile, the parsing efficiency in

Vietnamese is not high.

For Vietnamese dependency parsing, there have been many contributions [6, 7, 10, 15, 17]. In 2008, Nguyễn Lê

Minh et al. [7] used MST parser on a corpus consisting of 450 sentences. In 2012, Lê Hồng Phương et al. [10] used a

lexicalized tree-adjoining grammar parser trained on a subset of the Vietnamese treebank. In 2014, Nguyen et al [17] used

MaltParser and MSTParser on a Vietnamese dependency treebank which is converted automatically from a Vietnamese

treebank. In 2015, Lê Hồng Phương et al improved accuracy of Vietnamese dependency parsing, used distributed word

representations with Skip-gram and GloVe model [6, 15] for transition-based dependency parsing.

In this paper, we propose to use distributed word representations in a graph-based dependency parsing system. The

experiments carried out with the MSTParser system confirm that the use of this feature improve the performance of

dependency parsing systems, with an accuracy of 73.092% of the unlabeled attachment score (UAS) and 68.321% of the

labeled attachment score (LAS), in comparison with the values 70.296% of UAS and 65.772% of LAS when this feature is

not used. The distributed word representations are produced by three recent unsupervised learning models, the Skip-gram

model, the CBOW model and the GloVe model. Our main contributions in this paper are:

 First, we present experiments using distributed word representations with three unsupervised learning models:

Skip-grams, CBOW and GloVe.

 Second, we integrate distributed word representation features for graph-based dependency parsing.

This paper is organized as follows. Section II gives some background knowledge about dependency parsing which

focus on graph-based dependency parsing and distributed word representation. Section III describes our method in detail

for dependency parsing. Then, Section IV presents the data, experiments and results. Finally, conlusion and future work

are provided in Section V.

II. BACKGROUND

In this section, we present an overview of dependency parsing and distributed word representations.

A. Dependency parsing

The dependency parsing of a sentence consists of determining the binary asymmetric relations, called dependencies,

relationship between its lexical elements. A dependency relationship between two tokens can be named to clarify the

relationship between them. Dependency structure is determined by the relationship between the center token (head) and its

dependent token (dependent), denoted by an arrow. By convention, the root of the arrow is the head, and the top of the

arrow is the dependent.

mailto:luongnt@dlu.edu.vn
mailto:phuonglh@vnu.edu.vn
mailto:huyenntm@vnu.edu.vn
mailto:halinh.hus@gmail.com

Thi-Luong Nguyen, My-Linh Ha, Phuong Le-Hong, Thi-Minh-Huyen Nguyen 805

Figure 1. Dependency tree of a Vietnamese sentence

In the above example, the dependency relation from the verb “còn” to “Xã” labeled nsubj indicates that “Xã” is

subject of this verb. ROOT is the root of the tree and do not correspond to any word in the sentence.

There are two dominant approaches of dependency parsing. The first approach is transition-based parsing, for

example MaltParser [3]. The second is graph-based parsing, for example MSTParser [11]. In addition, there are two new

approaches for dependency parsing such as hybrid systems [2] and non-directional easy-first parsing [5]. However, in this

paper, we developed the second approach that is graph-based parsing. This parsing is described in more details in

subsection III.A.

B. Distributed word representations

Recently, distributed word representations have been applied in many natural language processing tasks. A

distributed representation is dense, low dimensional and real-valued. Distributed word representations are called word

embedding. Each dimension of the embedding represents a latent feature of the word which hopefully captures useful

syntactic and semantic similarities [1]. In NLP problems, the words are usually encoded by one-hot vectors (also called

indicator vectors) of the same length as the size of the vocabulary, if the word appears in any position, the corresponding

components of one-hot vector at that position is 1, otherwise it is 0. This present is quite simple and easy to understand but

it has two main problems. The first problem is data sparseness and the second problem is that it is not able to catch the

semantic between words. This limitation has prompted some machine learning methods to create a better representations,

one of these methods is distributed word representations. This represent are proof that it is more effectively for supporting

many tasks in natural language processing, for example machine translation, speech recognition.

III. METHODS

A. Graph-based dependency parsing

In this paper, we employ the graph-based dependency parsing algorithm introduced by [16]. In this algorithm, the

weights of the edges are calculated for building dependency graphs of s a sentence as follows:

s(i,j)=w.f(i,j)

 where w is the weight of the (i, j) edge, f(i, j) is feature of (i, j) edge. The weight of (i, j) edge represents the ability

to create a dependency between the head (wi) and the dependence (wj). If the arc score function is known, then the weight

of graph is:

 (()) ∑ ()

()

Then, based on the weights of all edges in graph, McDonald et al (2005) showed that this problem is equivalent to

finding the highest scoring directed spanning tree for the graph G originating out of the root node 0. In Figure 2, an

example graph G and the dependency tree maximizing the scoring function are given for the sentence “John saw Mary”.

Figure 2. Example of Graph-based dependency parsing

B. Skip-gram model

In this model [1] we are given a corpus of words w and their contexts c. Now, let’s define the skip-gram neural

network model as in Figure 3.

806 USING DISTRIBUTED WORD REPRESENTATIONS IN GRAPH-BASED DEPENDENCY PARSING FOR VIETNAMESE

Figure 3. Skip-gram model

Input layer: wi with vector one-hot X.

Hidden layer: vector h with N-dim.

Output layer: probabilities for words within the context of wi.

Learning process:

o is the weight matrix between the input layer and the hidden layer whose the i
th

 row represents the weights

corresponding to the i
th

 word of the vocabulary. Each output word vector has an associated N×V output

matrix There is a hidden layer consisting of N nodes (the exact size of N is a training parameter).

o The input to unit in the hidden layer hi is denoted by the weighted sum of its inputs. Since the input vector x is

one-hot encoded, the weights coming from the nonzero element will be the only ones contributing to the hidden

layer. Therefore, for the input x with xk = 1 and xk’ = 0 the outputs of the hidden layer will be

equivalent to the k
th

 row of W:

o Therefore, the input to the j
th

 node of the c
th

 output word is

o However it is obvious that all of the output layers of the same output word share the same weights;

therefore It finally computes the output of the j
th

 node of the c
th

 output word via the softmax function

which produces a multinomial distribution:

 ()
 ()

∑ ()

o Update the weighted matrix in the hidden-output layer:

 Compute:

 Update:

()

()

 ∑()

o Update the weighted matrix in the input-hidden layer:

()

()

 ∑∑ ()

(With is a parameter to the learning process)

C. CBOW model

CBOW model [1] is proposed based on the neural network. This model predicts words based on the context of the

neighbor words, the input is a set of words {w1, w2,...,wt} in the context C, this model aims to optimize the parameter in

order to maximize the occurrence conditional probability of word w within the context C.

The CBOW model is illustrated in Figure 4.

Thi-Luong Nguyen, My-Linh Ha, Phuong Le-Hong, Thi-Minh-Huyen Nguyen 807

Figure 4. CBOW model

Input layer: the context C with k-dim on the set of vocabulary V.

Hidden layer: vector h with N-dim.

Output layer: occurrence probabilities for a word yj in the context C.

Learning process:

o Similarly to proposed Skip-gram model, are two weighted matrixs.

o Transfer function: tang function, softmax function to compute the probability:

 ()
 (

)

∑ (
)

o Update the weight matrix in the hidden-output layer:

 Compute:

 Update:
 ()

 ()

(is a vector corresponding to the input)

o Update the weight matrix in the input-hidden layer:

 Compute: ∑

 Update:

()

()

(With is a patameter to the learning process)

D. GloVe: Global Vectors for Word Representation

GloVe is proposed by Jeffrey Pennington et al [4]. GloVe is an unsupervised learning algorithm to obtain vector

representations of words. The training process is performed on the aggregated global word-word co-occurrence statistics

from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. It uses

the matrix of word-word co-occurrence counts denoted by X, whose entries Xij tabulate the number of times word j occurs

in the context of word i. Let ∑ be the number of times a word appears in the context of the word i. Finally, let

 () ⁄ be the probability of the word j appears in the context of the word i.

The above argument suggests that the appropriate starting point for the word vector learning should be with the ratios of

the co-occurrence probabilities rather than the probabilities themselves. Noted that the ratio ⁄ depends on three

words i, j, k.The most general model takes the form:

 (̃)

Where all are word vectors and all ̃ are separate context word vectors. Finally, adding an

additional bias ̃ for ̃ to restore the symmetry,

 ̃ ̃ ()

This model is minimizing an objective function J, which evaluates the sum of all squared errors based on the above

equation, weighted with a function f:

 ∑ () (
 ̃ ̃ ())

where V is the size of the vocabulary.

One class of the weighting functions found to work well can be parameterized as:

808 USING DISTRIBUTED WORD REPRESENTATIONS IN GRAPH-BASED DEPENDENCY PARSING FOR VIETNAMESE

 () {
(⁄)

When it encounters extremely common word pairs () this function will trim off the normal output and

simply returns to one. For all other word pairs, it returns some weight between 0 and 1 where the distribution of the

weights within the (0, 1) range is decided by α. It uses the training code from tool GloVe
1
.

IV. EXPERIMENTS

A. Data

We use the similar database in our research [6, 15].

Text corpus for distributed word representations: To create distributed word representations, we use the dataset

consisting of 7.3GB of text from 2 million articles collected via the Vietnamese news portal. The text is first normalized to

lower case. All special characters are removed except these common symbols: the comma, the semi-colon, the colon, the

full stop and the percentage sign. All numeral sequences are replaced with the special token <number>, so that correlations

between a certain word and a number are correctly recognized by the neural network or the log-bilinear regression model.

Each word in the Vietnamese language may consist of more than one syllable with spaces in between, which could be

regarded as multiple words by the unsupervised models. Hence it is necessary to replace the spaces within each word with

underscores to create full word tokens. The tokenization process follows the method described in [9]. After removal of

special characters and tokenization, the articles add up to 969 million word tokens, spanning a vocabulary of 1.5 million

unique tokens. We train the unsupervised models with the full vocabulary to obtain the representation vectors, and then

prune the collection of word vectors to the 5, 000 most frequent words, excluding special symbols and the token <number>

representing numeral sequences.

Dependency treebank in Vietnamese: We conduct our experiments on the Vietnamese dependency treebank

dataset. This treebank is derived automatically from the constituency-based annotation of the VTB [8], containing 10, 471

sentences (225, 085 tokens). We manually check the correctness of the conversion on a subset of the converted corpus to

come up with a training set of 2,305 sentences, and a test set of 576 sentences.

B. Vietnamese Dependency Parsing based-on MSTParser

MSTParser is developed by Ryan McDonald et al [12]. MSTParser has two processes: training and analysis. In

training, MSTParser uses on-line algorithms [11]. In analysis, MSTParser uses a graph-based algorithm. The accuracy of

MSTParser on a variety of languages is quite high: ASU= 92.8%, ASL= 90.7% for Japanese, ASU= 91.1%, ASL= 85.9%

for Chinese, ASU= 90.4%, ASL = 87.3% for German. . .

Table 1 is the features set that are used by MSTParser
2
. We denote (xi, xj) to indicate that there is a directed edge

from word xi to word xj. The basic features of this model are outlined in Table 1a and b. All features are conjoined with the

direction of attachment as well as the distance between two words being attached. In Table 1c, the features take the form

of a POS trigram: the POS of the parent, of the child, and of a word in between, for all words linearly between the parent

and the child. We denote xi-word for word of the parent node in the dependency tree, xj-word for word of child nodes, xi-

pos to POS of the parent node, xj-pos to POS of child nodes, xi-pos+1 to POS to the right of the parent in sentence, xi-pos-

1to POS to the left of the parent, xj-pos+1 to POS to the right of the child, xj-pos-1 to POS to the left of child, b-pos to

POS of a word in between parent and child nodes [14].

a

Basic Uni-gram features

xi-word, xi-pos

xi-word

xi-pos

xj-word, xj-pos

xj-word

xj-pos

b

Basic Bi-gram features

xi-word, xi-pos, xj-word, xj-pos

xi-pos, xi-word, xj-pos

xi-word, xi-pos, xj-pos

xi-pos, xi-word, xj-pos

xi-word, xi-pos, xj-word

xi-word, xj-word

xi-pos, xj-pos

c

In between POS features

xj-pos, b-pos, xj-pos

Surrounding word POS features

xi-pos, xi-pos + 1, xj-pos – 1, xj-pos

xi-pos - 1, xi-pos, xj-pos – 1, xj-pos

xi-pos, xi-pos + 1, xj-pos, xj-pos + 1

xi-pos - 1, xi-pos, xj-pos, xj-pos + 1

Table 1. Features used by MSTParser system

Let Φ0 is the base feature set, Φ0 consists of the following feature templates:

- Part-of-speech tags and word in basic Uni-gram features (Table 1 a)

- Part-of-speech tags and word in basic Bi-gram features (Table 1 b)

- Part-of-speech tags in between POS features, surrounding word and POS features (Table 1 c)

1http://nlp.stanford.edu/projects/glove/
2http://sourceforge.net/projects/mstparser/

Thi-Luong Nguyen, My-Linh Ha, Phuong Le-Hong, Thi-Minh-Huyen Nguyen 809

We test with Φ0 using MSTParser in our dependency treebank in Vietnamese, then we have result UAS=70.296%,

LAS=65.772%.

C. Integrating distributed word representations to MSTParser

We integrate distributed word representations with our features set in MSTParser. We add distributed word

representations for xi, xj, b (word between xi and xj) in Table 2.

Feature set Feature template

Φ1 Φ0, s(xi), s(xj), s(b), s(xi+1), s(xi-1), s(xj+1), s(xj-1)

Φ2 Φ0, c(xi), c(xj), c(b), c(xi+1), c(xi-1), c(xj+1), c(xj-1)

Φ3 Φ0, g(xi), g(xj), g(b), g(xi+1), g(xi-1), g(xj+1), g(xj-1)

Table 2. Our feature sets in MSTParser

We use two attachment scores, labeled attachment score (LAS) and unlabelled attachment score (UAS) to evaluate

the accuracy of MSTParser. Attachment scores are defined as the percentage of correct dependency relations recovered by

the parser. A dependency relation is considered correct if both the source word and the target word are correct (UAS), plus

the dependency type is correct (LAS).

The accuracy of MSTParser system with different feature sets is shown in Table 3. The feature set Φ1 consists of

the features defined in Φ0, plus the distributed word representations produced by the Skip-gram model: xi, xj, b (word

between xi to xj), word on the left and on the right of xi, word on the left and on the right of xj. The feature set Φ2 and Φ3

consists of the features defined in Φ0 like Φ1, but replaces distributed word representations produced by the CBOW model

and GloVe model. In this result, we show that distributed word representations are produced by GloVe model has the best

accuracy.

Feature
Train Test

UAS LAS UAS LAS

Φ0 95.658% 93.361% 70.296% 65.772%

Φ1 98.093% 96.079% 72.665% 67.961%

Φ2 97.916% 95.938% 72.452% 67.771%

Φ3 98.048% 96.055% 73.092% 68.321%

Table 3. Accuracy of MSTParser with new feature sets

V. CONCLUSION

In this paper, we presented the integration of distributing word representations in a graph-based dependency parsing

system which is the MSTParser system. We evaluated the accuracy of the system for Vietnamese parsing in two cases:

with or without using the distributed word representations feature in MSTParser. We used three different models (Skip-

gram, CBOW and GloVe) and it is shown that the GloVe model is the best for producing distributed word representations

feature in graph-based dependency parsing.

The accuracy of our system are UAS=73.092%, and LAS=68.321% when we use GloVe model for producing

distributed word representations. Although this result is less efficient than our previous research [6, 15], we showed that

the use of distributed word representations feature allows to obtain a better result than without this feature (UAS=70.296%

and LAS=65.772%) in MSTParser system.

In the future, we will integrate the distributed word representations for hybrid systems. Another approach that we

can adopt is unsupervised dependency parsing, a recent trend that comes with several benefits.

VI. ACKNOWLEDGEMENTS

We are grateful to our anonymous reviewers for their helpful comments which helped us improve the quality of the

article in terms of both the presentation and the content.

REFERENCES

[1] Turian, J., Ratinov, L., Bengio, Y. (2010). Word representations: A simple and general method for semi-supervised learning.

Proceedings of ACL, (pp. 384–394). Uppsala, Sweden.

[2] J. Nivre and R. McDonald. (2008). Integrating graph-based and transition-based dependency parsers. ACL-08, (pp. 950–958).

Columbus Ohio, USA.

[3] J. Nivre, J. Hall, J. Nilsson, C. Atanas, G. Erigit,. (2007). Maltparser: A language-independent system for data-driven dependency

parsing. Natural Language Engineering, (pp. 13:95–135).

810 USING DISTRIBUTED WORD REPRESENTATIONS IN GRAPH-BASED DEPENDENCY PARSING FOR VIETNAMESE

[4] Jeffrey Pennington and Richard Socher and Christopher D. Manning. (2014). GloVe: Global Vectors for Word Representation. In

Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532--1543).

[5] K. Sagae and A. Lavie. (2006). A best-first probabilistic shift-reduce parser. COLING/ACL 2006, (pp. 691–698). Sydney,

Australia.

[6] Le Hong, P., T. M. H. Nguyen, T. L. Nguyen, and M. L. Ha. (2015). Fast Dependency Parsing using Distributed Word

Representations. Springer Proceedings of PAKDD 2015 Workshops, Trends and Applications in Knowledge Discovery and Data

Mining, vol. LNAI 9441 (pp. 261-272). HCM City, Vietnam: Springer.

[7] N. L. Minh, H. T. Điệp, and T. M. Kế. (2008). Nghiên cứu luật hiệu chỉnh kết quả dùng phương pháp MST phân tích cú pháp phụ

thuộc tiếng Việt. ICT-rda 8, (pp. 258–267). Hà Nội, Việt Nam.

[8] Nguyen T. L., M. L. Ha, V. H. Nguyen, T. M. H. Nguyen, and P. Le Hong. (2013). Building a Treebank for Vietnamese

Dependency Parsing. The 10th IEEE RIVF International Conference on Computing and Communication Technologies (pp. 147--

151). Hanoi, Vietnam: IEEE.

[9] P. Le Hong, T. M. H. Nguyen, A. Roussanaly, and T. V. Ho. (2008). A hybrid approach to word segmentation of Vietnamese

texts. Proceedings of LATA, LNCS 5196 (pp. 240–249). Springer.

[10] P. Le Hong, T. M. H. Nguyen, and R. Azim. (2012). Vietnamese parsing with an automatically extracted tree-adjoining grammar.

RIVF. HCMC, Vietnam.

[11] R. McDonald and F. Pereira. (2006). Online learning of approximate dependency parsing algorithms. EACL, (pp. 81–88). Trento,

Italy.

[12] R. McDonald, F. Pereira, K. Ribarov, and J. Haji . (2005). Non-projective Dependency Parsing using Spanning Tree Algorithms.

Proceedings of HLT/EMNLP .

[13] R. McDonald, K. Lerman, and F. Pereira. (2006). Multilingual dependency parsing with a two-stage discriminative parser.

Proceedings of the Tenth Conference on Computational Natural Language Learning.

[14] Ryan McDonald, Koby Crammer and Fernando Pereira. (2005). Online Large-Margin Training of Dependency Parsers. 43rd

Annual Meeting of the Association for Computational Linguistics. ACL.

[15] Vu, M. C., A. T. Luong, and P. Le Hong. (2015). Improving Vietnamese Dependency Parsing using Distributed Word

Representations. The Sixth International Symposium on Information and Communication Technology (pp. 54-60). Hue, Vietnam:

ACM.

[16] R. McDonald and J. Nivre (2011). Analyzing and integrating dependency parsers. Computational Linguistics, (pp. 197–230).

[17] D. Q. Nguyen, D. Q. Nguyen, S. B. Pham, P. T. Nguyen, and M. L. Nguyen. (2014). From treebank conversion to automatic

dependency parsing for Vietnamese. In Proceedings of the 19th International Conference on Application of Natural Language to

Information Systems, NLDB’14, pages 196–207.

SỬ DỤNG BIỂU DIỄN PHÂN TÁN CỦA TỪ CHO PHÂN TÍCH CÚ PHÁP
PHỤ THUỘC DỰA VÀO ĐỒ THỊ TRÊN TIẾNG VIỆT

Nguyễn Thị Lương, Hà Mỹ Linh, Lê Hồng Phương, Nguyễn Thị Minh Huyền

TÓM TẮT— Phân tích cú pháp phụ thuộc là một vấn đề đã thu hút sự quan tâm của nhiều nhóm nghiên cứu xử lý ngôn ngữ tự nhiên

trong những năm gần đây. Cú pháp phụ thuộc là một dạng biểu diễn phụ thuộc ngữ nghĩa của các từ trong câu có nhiều ứng dụng cho

các bài toán phức tạp như hệ thống hỏi đáp, trích chọn thông tin, tóm tắt văn bản, dịch máy... Hiện nay, đã có rất nhiều hướng nghiên

cứu cho bài toán phân tích cú pháp phụ thuộc và đạt được kết quả khả quan cho các ngôn ngữ khác nhau. Đối với tiếng Việt, nhóm

nghiên cứu của chúng tôi đã sử dụng mô hình Skip-gram, Glove để sinh biểu diễn phân tán cho từ vựng. Sau đó sử dụng đặc trưng này

cho bài toán phân tích cú pháp phụ thuộc dựa trên các bước chuyển. Trong bài báo này, chúng tôi đề xuất sử dụng đặc trưng biểu diễn

phân tán của từ cho phân tích cú pháp phụ thuộc dựa trên đồ thị với công cụ MSTParser.

