
Kỷ yếu Hội nghị Quốc gia lần thứ X về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR), Đà Nẵng, ngày 17-18/08/2017

DOI: 10.15625/vap.2017.0001

A BIDIRECTIONAL PATH PLANNING ALGORITHM FOR AUTONOMOUS
PARALLEL CAR PARKING WITH SMOOTH MOVEMENT

CONSIDERATION

Pham Quang Dung
1
, Vu Thanh Hai

1
, Nguyen Tuan Anh

1
, Tu Minh Phuong

2

1
 FPT Software, Hoa Lac Hi-tech Park, Km29, Thanglong Freeway, Thach That District, Hanoi, Vietnam

2
Posts and Telecommunications Institute of Technology Km10, Nguyen Trai Rd., Ha Dong Dist., Hanoi, Vietnam

dungpq1@fsoft.com.vn, haivt2@fsoft.com.vn, anhnt66@fsoft.com.vn, phuongtm@ptit.edu.vn

ABSTRACT: We consider in this paper the problem of path planning for autonomous parallel car parking in partially observable

environments. In this scenario, a car is suppose to have sensors to detect obstacles around within a limited distance. We propose an

algorithm based on bidirectional search for computing the path with respect to kinematic constraints to drive the car from a current

position to the specified parking lot. We aim at computing a path plan for the car so that the movement is smooth because changing

the control profile (turning angle, move direction) too much may result in longer execution time and more energy used. We conduct

simulation experiments on different positions of the car. Simulation results show that our algorithm can find smooth itineraries to

drive the car to the parking lot and the itineraries are natural as those conducted by human experiences.

Keywords: Autonomous vehicles, parallel parking, path planning, breadth-first search.

I. INTRODUCTION

Research in advanced driver assistance system has received much attention from scientists of artificial

intelligence community. One of the problem this domain is the path planning for autonomous car parking. The

objective of this problem is to compute a path to drive the given car from a current location to a specified parking lot

avoiding obstacles with respect to the kinematic model. Different technical approaches have been proposed for solving

this problem. Search-based methods reply on a discrete search space [2], [7], [6]. In this approach, a neighborhhood of

a state (or position) of the car is defined. This neighborhood is a set of neighboring states of the current state generated

by applying a set of discretized control parameters. Then, a search heuristic, i.e., A* algorithm [3], applied to find a

path from the initial state to a target state. Empirically, the path computed by such heuristics is often not smooth that it

can contain unnatural swerves and unnecessary steering. Dolgov et al. in [2] proposed a post-processing algorithm with

two-stage optimization method the make the path more smooth. This post-processing algorithm is based on non-linear

optimization program and non parametric interpolation which is quire complicated to implement. Li et al. in [4]

formulated the path planning for car parking problem as a dynamic optimization problem and proposed an algorithm

based on interior point method for solving this problem. The parallel car parking problem was considered in [1, 5, 8, 9].

In those papers, algorithms based on geometry computation were proposed that find the path from a given position to

the parking lot.

In this paper, we consider a case-study of parallel parking and propose an algorithm based on breadth-first

search for computing the path from the current position to one of the given parking lot. In our proposed algorithm, we

apply a bi-directional search strategy in order to speedup the search. More precisely, we generate in advance a set of

positions that can drive the car to the target parking lot and then perform a breadth-first search from the current

position to one of these generated positions. Simulation results on some generated scenarios show that the computed

path is smooth and natural as human drive.

The paper is organized as follows. Section II describes the path planning in autonomous parallel car parking

problem. Section III presents our proposed algorithm. Simulation results are presented in Section IV. Section V

concludes the paper and gives some future works.

II. PROBLEM DESCRIPTION

Position space and position transition

Each position of the car is represented by the position of the middle of the rear axle and is represented by a tuple

(x, y, ) where x, y are coordinate in 2D surface and  is the orientation. We denote X the set of positions of the car in

the considered surface. The movement of the car must satisfy the kinematic model which specifies a new position from

the current position under a control profile represented by a speed v and a steering angle  (see Figure 2.1). Its dynamic

is described by following equations:

 ̇ = vcos()

 ̇ = vsin()

̇ = v
 

mailto:anhnt66@fsoft.com.vn

2 A BIDIRECTIONAL PATH PLANNING ALGORITHM FOR AUTONOMOUS PARALLEL CAR PARKING…

Figure 2.1. Illustration of car models

where L is the distance between the front and rear axles. Most of the research on path planning for cars in the literature

discreterizes the space by considering a position transition function to specify the set of neighboring positions of the

current position p with some discrete values of the parameters of the control profile. In this paper, we consider a

transition function f(p, s, ) that receives a current position p and two control parameters s and  representing the move

distance and the level of steering angle and returns a neighboring position of p. Values of s and  can be positive and

negative and are taken from a discrete set. Positive values of s mean moving forward, and negative values of s mean

moving backward. Positive values of  mean turning left and negative values of  mean turning right. This transition

function can be specified by experiments for a specific car-like vehicle. We denote N(p, S, ) the neighborhood

function that specifes the set of neighboring position of p.

N(p, S, ) = {f (p, s, ) | s  S   }

Given two positions p1 = (x1, y1, 1) and p2 = (x2, y2, 2), p1, p2  X, we say that p1 and p2 are identical and

denote p1
 p2 if |x1 - x2| < 1, |y1 - y2| < 1, and |1 - 2| < 2. Given a set of position P = {p1, . . ., pK}, (P  X) and a

position p, we say that p belongs to P and denote p  P if there exists i  {1, . . ., K} such that p pi.

Problem statement

We make assumption that the car is equipped a sensor that is able the detect obstacles-free region R (for

example RPLIDAR 360
o
 Laser Scanner). Given an initial position (x0, y0, 0) and a position of the parking lot (x

*
, y

*
,


*
), the path planning problem consists of finding a sequence of positions (x0, y0, 0), . . ., (xN, yN, N) such that:

 (xN, yN, N)
 (x

*
, y

*
, *

),

 (xi+1, yi+1, i+1)  N((xi, yi, i), S, );  i = 0, 1, . . . , N-1

 (xi, yi, i)  R,  i= 0, 1, . . . , N

III. PROPOSED ALGORITHM

We describe in this section the proposed algorithm. We aim at finding a path with smooth movement

consideration in the sense that the car will not change the steering angle or the direction too much.

Elementary movement sequences

Given a position p0 and a drive control (s, ), the sequence of positions seq(p0, s, , k) = ‹p0, . . ., pk›, where pi =

f(pi-1, s, ), i = 1, 2, . . ., k is called an elementary movement sequence (or elementary path). Intuitively, an elementary

movement sequence is a sequence of positions in which the drive control is kept unchanged. Figure 3.1 illustrates

elementary movement sequences. Algorithm 1 depicts the procedure of generating an elementary movement sequence

within a obstacles-free region R from a position p using drive control (s, ) with a length constrained.

The objective of path planning algorithm proposed in this paper is to compute a path that drives the given car

from the its current position to a specifed parking lot will be a sequence of elementary movement sequences in which

the number of elementary movement sequences is as small as possible.

Pham Quang Dung, Vu Thanh Hai, Nguyen Tuan Anh, Tu Minh Phuong 3

Input:

 p: current position

 maxLen: maximal length of path

 (s,): drive control (move distance and steering angle)

 R: obstacle-free region detected by a sensor

Output: An elementary movement sequence from the position p by

the drive control (s, )

1. P  p;

2. pi  p;

3. while Length(P) < maxLen do

4. p  f(pi, s, );

5. if pi  R then

6. P  P::pi;

7. else

8. BREAK;

9. endif

10. endwhile

11. return P;

Algorithm 1. GeneratePath(p, maxLen, s, , R)

Figure 3.1. Illustration of elementary movements

4 A BIDIRECTIONAL PATH PLANNING ALGORITHM FOR AUTONOMOUS PARALLEL CAR PARKING…

Input:

 p0 = (x0,y0,0): initial position

 P = {(

,

, 

), . . ., (

,

, 

)}: intermediate target

positions

 R: obstacle-free region detected by a sensor

 : set of discretized steering angles

Output: path from p0 to one of position of P

1. Q  ;

2. foreach s  S do

3. foreach   do

4. P
e
  GeneratePath(p0, maxLen, s, );

5. foreach position p of P
e
 do

6. if p  P then

7. return FormPath(p , p0);

8. endif

9. endfor

10. level(P
e
)  1;

11. Enqueue(Q, P
e
);

12. endfor

13. endfor

14. while Q   do

15. P  Dequeue(Q);

16. foreach i  {1, 2, …, length(P)-1} do

17. p  P[i];

18. foreach sS do

19. foreach   do

20. P
e
  GeneratePath(p, maxLen, s, );

21. foreach position p of P
e
 do

22. if p  P then

23. return FormPath(p, p0);

24. endif

25. endfor

26. if level(P) < maxLevel -1 then

27. level(P
e
)  level(P) + 1;

28. Enqueue(Q, P
e
);

29. endif

30. endfor

31. endfor

32. endfor

33. endwhile

34. return ;

Algorithm 2. Path(p0, maxLen, maxLevel, P, S, , R)

The algorithm

We apply a bi-directional search strategy to find the path from the given initial position (x0, y0, 0) to a target

parking lot (x
*
, y

*
, *

). In the first step, we find a set of positions P = {(

,

, 

), . . ., (

,

, 

)}, in which from a

position (

,

,

) of P the car can move to (x

*
, y

*
,*

) by a path Pi containing no more than elementary movement

sequences. In the second step, we find the path from (x0, y0, 0) to one of the positions in P, let say position (

,

,

),

and then, the car continues following the path Pi computed in the first step to the target position (x
*
, y

*
,*

). The

remaining of the paper describes the method to solve the problem of finding a path from an initial position p0 = (x0, y0,

0) to one of the positions of the set P.

The key idea of our algorithm is based on the breadth-first search fashion and is described as follows. First, we

try to find a path from p0 to P by one elementary movement sequence. If no such path is found, we try to find a path

from (x0, y0, 0) to P by two elementary movement sequences, etc. Our proposed method is depicted in Algorithm 2.

Lines 1-13 try to find a path from p0 to P by one elementary movement sequence in which lines 2-3 scan all drive

Pham Quang Dung, Vu Thanh Hai, Nguyen Tuan Anh, Tu Minh Phuong 5

controls (s, ) in the discretized S and . For each control (s, ), we generate a path P
e
 from p0. Lines 5-9 return a path

if there exists a position of P
e
 that belongs to P. Otherwise, we set the level of P

e
 by 1 and push it into the queue Q

(lines 10-11). In the loop (lines 14-33), at each step, a path P in the front of the queue is popped (line 15). Lines 16-20

generate an elementary movement sequence P
e
 from each position p of P. If there exists a position p

e
 of P

e
 that belongs

to P, then we return a path from p0 to p
e
 (lines 21-25). Otherwise, we set of the level of P

e
 and push it into the queue Q

(lines 26-29) if the level does not exceed the maximum upper bound maxLevel.

IV. SIMULATION

Settings

The configuration of the car in this experiments is described in Table 4.1 in which two gap parameters

specifying whether two positions are the same (see Section 2.1) are 1 = 0.5 and 2 = 0.005. Table 4.2 presents the

neighboring position of the position (0,0,0) under different drive control (the angle is measured in rad).

Table 4.1. Car configuration

W H L 1 2

10 20 15 0.5 0.005

Table 4.2. Transition profile: neighboring positions of position (0, 0, 0)

s  Neighboring positions

2 0 (1.33, 0, 0)

2 0.2 (1.33, 0.02, 0.3)

2 -0.2 (1.33, -0.02, -0.3)

2 0.52 (1.33, 0.04, 0.8)

2 -0.52 (1.33, 0.04, -0.8)

-2 0 (-1.33, 0, 0)

-2 0.2 (-1.33, 0.02, -0.3)

-2 -0.2 (-1.33, -0.02, 0.3)

-2 0.52 (-1.33, 0.04, -0.8)

-2 -0.52 (-1.33, 0.04, 0.8)

In this setting, we set two cars at positions (40,35,0) and (95,35,0) and drive the given car at different positions

to the parking lot between these two cars as illustrated in Figure 4.1. The car is equipped a sensor located in the front of

the car. We generate 321 different positions (x0, y0, 0) of the given car where x0  {45, 50, 55, 60, 65, 70}, y0  {16,

17, 18, 19, 20, 21, 22} and 0  {-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3}. We only consider the case that the position of the

sensor is inside the dash square in Figure 4.1 so that the sensor can detect two square corners A and B from which the

parking lot can be detected (composed positions from this sampling that are out of scope of of the dash square region

will be dropped out).

Figure 4.1. Parallel parking scenario

For generating intermediate position P, we compute paths with lengths more than 20 so that the intermediate

positions generated are out of the parking lot region between two cars. Each path from these intermediate position to

the parking lot contains 3 elementary movement sequences: moves backward - backward - forward (as human

experiences). The simulation presented in Section 4.2 will show the path from the initial position of the car to one of

the generated intermediate positions P. All the experiments are conducted on the machine Intel(R) Core(TM) i7-4600U

CPU, 2.10GHz and 8GB memory.

6 A BIDIRECTIONAL PATH PLANNING ALGORITHM FOR AUTONOMOUS PARALLEL CAR PARKING…

a. Step 1: Path from initial position to an intermediate

position

a. Step 1: Path from initial position to an intermediate

position

b. Step 2: Path from the intermediate position to the

parking lot

b. Step 2: Path from the intermediate position to the

parking lot

Figure 4.2. Illustration of smooth parallel parking Figure 4.3. Illustration of smooth parallel parking

Simulation results

Partial simulation results are presented in Tables 4.3, 4.4 which show the path from the initial position (x0, y0,

0) of the car to one of the intermediate position P. Columns 4 and 5 respectively present the number of position

generated and the number of elementary paths for reaching the intermediate positions. Columns 6 and 7 present the

time (in seconds) and the length of the path found. The results show that our algorithm is able to find the path from the

initial position to intermediate positions with no more than 3 elementary paths within 8 seconds. For some easy cases,

the algorithm find the path very fast with only 1 elementary path and generate only 21 positions. For some more

difficult cases, the algorithm must generate up to 216131 positions in 7.6 seconds and find the path with 3 elementary

paths. Figures 4.2 and 4.3 show 2 examples of the paths. We observe that the paths are smooth and natural as human

experience.

Implementation in a toy car

We have implemented our algorithm on a toy car with a board Jetson TX1 equiped by a RPLIDAR. The

proposed algorithm has successfully in finding a path for the toy car to move into the parking lot which is the space

formed between two boxed as illustrated in Figure 4.4).

Figure 4.4. The toy car

Pham Quang Dung, Vu Thanh Hai, Nguyen Tuan Anh, Tu Minh Phuong 7

Table 4.3. Simulation result (part I) Table 4.4. Simulation result (part II)

 x0 y0 0 P L time m x0 y0 0 P L time m

50 16 0 2609 2 0.078 33

50 16 0.1 30548 3 0.942 28

50 16 0.2 16934 3 0.495 28

50 16 0.3 1203 2 0.047 31

50 17 -0.1 113203 3 3.319 32

50 17 0 19735 3 0.579 32

50 17 0.1 54459 3 1.68 28

50 17 0.2 2737 2 0.1 27

50 17 0.3 1195 2 0.027 31

50 18 -0.2 83468 3 2.741 34

50 18 -0.1 103712 3 3.334 27

50 18 0 3241 2 0.114 32

50 18 0.1 28076 3 0.858 27

50 18 0.2 1748 2 0.068 28

50 18 0.3 1125 2 0.015 30

50 19 -0.2 40396 3 1.326 32

50 19 -0.1 34948 3 1.144 27

50 19 0 3287 2 0.11 31

50 19 0.1 6137 2 0.187 26

50 19 0.2 1692 2 0.06 27

50 19 0.3 933 2 0.02 26

50 20 -0.3 2011 2 0.07 35

50 20 -0.2 51782 3 1.657 33

50 20 -0.1 90242 3 2.938 32

50 20 0 3372 2 0.109 29

50 20 0.1 6062 2 0.204 24

50 20 0.2 25476 3 0.813 26

50 20 0.3 34948 3 1.094 29

50 21 -0.3 2239 2 0.08 34

50 21 -0.2 19676 3 0.683 28

50 21 -0.1 3504 2 0.11 27

50 21 0 3306 2 0.113 27

50 21 0.1 25325 3 0.825 23

50 21 0.2 2926 2 0.104 25

50 21 0.3 21625 3 0.712 35

50 22 -0.3 2306 2 0.09 33

50 22 -0.2 32282 3 1.241 28

50 22 -0.1 3547 2 0.126 24

50 22 0 2962 2 0.075 29

50 22 0.1 2402 2 0.088 27

50 22 0.2 43773 3 1.618 34

50 22 0.3 1041 2 0.034 27

50 23 -0.3 2395 2 0.086 32

50 23 -0.2 4686 2 0.161 27

50 23 -0.1 3363 2 0.11 25

50 23 0 1892 2 0.059 30

 70 16 0 127947 3 3.624 29

70 16 0.1 99042 3 3.235 39

70 16 0.2 12200 3 0.388 21

70 16 0.3 410 2 0.029 21

70 17 -0.1 36091 3 1.14 23

70 17 0 141910 3 4.057 23

70 17 0.1 36817 3 1.11 28

70 17 0.2 2945 2 0.078 20

70 17 0.3 383 2 0.01 20

70 18 -0.2 85639 3 2.733 30

70 18 -0.1 2873 2 0.11 22

70 18 0 177693 3 5.7 22

70 18 0.1 31424 3 1.02 27

70 18 0.2 2888 2 0.111 22

70 18 0.3 266 2 0.01 19

70 19 -0.2 115830 3 3.759 32

70 19 -0.1 87166 3 3.112 36

70 19 0 36361 3 1.145 39

70 19 0.1 1635 2 0.062 25

70 19 0.2 8453 2 0.279 22

70 19 0.3 211 2 0.007 19

70 20 -0.3 36212 3 1.188 23

70 20 -0.2 8123 2 0.288 29

70 20 -0.1 109099 3 3.536 36

70 20 0 27363 3 0.883 23

70 20 0.1 1431 2 0.046 19

70 20 0.2 9094 2 0.301 23

70 20 0.3 31 1 0.001 19

70 21 -0.3 23118 3 0.77 21

70 21 -0.2 46837 3 1.525 32

70 21 -0.1 10410 2 0.42 25

70 21 0 1791 2 0.074 24

70 21 0.1 37781 3 1.249 20

70 21 0.2 2388 2 0.063 19

70 21 0.3 2601 2 0.092 21

70 22 -0.3 23576 3 0.984 22

70 22 -0.2 83962 3 2.783 30

70 22 -0.1 9601 2 0.344 26

70 22 0 1829 2 0.052 24

70 22 0.1 2673 2 0.108 18

70 22 0.2 1663 2 0.05 13

70 22 0.3 1873 2 0.038 16

70 23 -0.3 2019 2 0.089 18

70 23 -0.2 2963 2 0.11 15

70 23 -0.1 2048 2 0.065 28

70 23 0 559 2 0.031 15

8 A BIDIRECTIONAL PATH PLANNING ALGORITHM FOR AUTONOMOUS PARALLEL CAR PARKING…

V. CONCLUSION

We consider in this paper the path planning problem in autonomous parallel car parking taking into account the

smooth movements criteria. We proposed a bi-directional algorithm based on breadth-first search for solving this

problem. The proposed algorithm is easy to implement. Experimental results on different scenarios show that our

algorithm is able to find a smooth path to drive the car from the given position to the parking lot. We will consider the

path planning for autonomous cars on partially observable environments.

REFERENCES

[1] Sungwoo CHOI and Clement Boussard and Brigitte d'Andrea-Novel. Easy Path Planning and Robust Control for

Automatic Parallel Parking. 18th IFAC World Congress pages 656-661, 2011.

[2] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonomous vehicles in unknown semi-

structured environments. The international Journal of Robotics Rearch, 29(5):485-501, 2010.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael. Correction to "a formal basis for the heuristic determination of minimum

cost paths". ACM SIGART Bulletin, 37:28-29, 1972.

[4] B. Li and Z. Shao. A uni_ed motion planning method for parking an autonomous vehicle in the presence of

irregularly placed obstacles. Knowledge-Based Systems, 86:11-20, 2015.

[5] Y. K. Lo, A. B. Rad, C. W. Wong, and M. L. Ho. Automatic parallel parking. In IEEE Conf. Intelligent

Transportation Systems, pages 1190{1193, 2003.

[6] C. Pradalier, S. Vaussier, and P. Corke. Path planning for a parking assistance system: implementation and

experimentation. In Australasian Conference on Robotics and Automation (ACRA 2005), 2005.

[7] A. Vorashompoo, B. Panomruttanarug, and K. Higuchi. Bidirectional best _rst based autonomous parallel parking

system. In The 8th Conference o Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology (ECTI-CON), 2011, pages 593-596, 2011.

[8] H. Vorobieva, N. Minoiu-Enache, S. Glaser, and S. Mammar. Geometric continuouscurvature path planning for

automatic parallel parking. In Proceedings of 10th IEEE International Conference on Networking, Sensing and

Control, ICNSC, pages 418-423, 2013.

[9] A. Zhdanov, D. Klimov, V. Korolev, and A. Utemov. Modeling parallel parking a car. Int. J. Comput. Syst.

Sci, 47(6):907-917, 2008.

THUẬT TOÁN TÌM ĐƯỜNG ĐI DỰA TRÊN TÌM KIẾM 2 CHIỀU CHO BÀI TOÁN ĐẬU
XE TỰ ĐỘNG VÀO BÃI TÍNH ĐẾN YẾU TỐ MƯỢT CỦA DI CHUYỂN

Phạm Quang Dũng, Vũ Thanh Hải, Nguyễn Tuấn Anh, Từ Minh Phương

TÓM TẮT: Chúng tôi khảo sát bài toán tìm đường đi cho xe di chuyển tự động vào bãi đỗ. Trong ngữ cảnh này, chiếc xe được

trang bị một cảm biến có thể dò được các chướng ngại vật xung quanh với khoảng cách hữu hạn. Chúng tôi đề xuất thuật toán tìm

đường đi dựa trên tìm kiếm 2 chiều để cho xe di chuyển từ vị trí hiện tại vào bãi đậu xe tuân theo luật di chuyển của xe. Trong thuật

toán đề xuất, chúng tôi tính đến tính mượt của di chuyển vì nếu lệnh điều khiển (góc đánh lái, hướng di chuyển) thay đổi quá nhiều

và vụn vặt thì quãng đường di chuyển không tối ưu và tiêu hao nhiều nhiên liệu. Chúng tôi đã cài đặt thử nghiệm thuật toán đề xuất,

kết quả chạy mô phỏng cho thấy trong đa số các trường hợp, thuật toán tìm ra đường đi giúp xe di chuyển tự động vào bãi đỗ một

cách mượt mà như đường đi do lái xe điều khiển dựa trên kinh nghiệm.

