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ABSTRACT: We consider in this paper the problem of path planning for autonomous parallel car parking in partially observable 

environments. In this scenario, a car is suppose to have sensors to detect obstacles around within a limited distance. We propose an 

algorithm based on bidirectional search for computing the path with respect to kinematic constraints to drive the car from a current 

position to the specified parking lot. We aim at computing a path plan for the car so that the movement is smooth because changing 

the control profile (turning angle, move direction) too much may result in longer execution time and more energy used. We conduct 

simulation experiments on different positions of the car. Simulation results show that our algorithm can find smooth itineraries to 

drive the car to the parking lot and the itineraries are natural as those conducted by human experiences. 

Keywords: Autonomous vehicles, parallel parking, path planning, breadth-first search. 

I. INTRODUCTION 

Research in advanced driver assistance system has received much attention from scientists of artificial 

intelligence community. One of the problem this domain is the path planning for autonomous car parking. The 

objective of this problem is to compute a path to drive the given car from a current location to a specified parking lot 

avoiding obstacles with respect to the kinematic model. Different technical approaches have been proposed for solving 

this problem. Search-based methods reply on a discrete search space [2], [7], [6]. In this approach, a neighborhhood of 

a state (or position) of the car is defined. This neighborhood is a set of neighboring states of the current state generated 

by applying a set of discretized control parameters. Then, a search heuristic, i.e., A* algorithm [3],  applied to find a 

path from the initial state to a target state. Empirically, the path computed by such heuristics is often not smooth that it 

can contain unnatural swerves and unnecessary steering. Dolgov et al. in [2] proposed a post-processing algorithm with 

two-stage optimization method the make the path more smooth. This post-processing algorithm is based on non-linear 

optimization program and non parametric interpolation which is quire complicated to implement. Li et al. in [4] 

formulated the path planning for car parking problem as a dynamic optimization problem and proposed an algorithm 

based on interior point method for solving this problem. The parallel car parking problem was considered in [1, 5, 8, 9]. 

In those papers, algorithms based on geometry computation were proposed that find the path from a given position to 

the parking lot.  

In this paper, we consider a case-study of parallel parking and propose an algorithm based on breadth-first 

search for computing the path from the current position to one of the given parking lot. In our proposed algorithm, we 

apply a bi-directional search strategy in order to speedup the search. More precisely, we generate in advance a set of 

positions that can drive the car to the target parking lot and then perform a breadth-first search from the current 

position to one of these generated positions. Simulation results on some generated scenarios show that the computed 

path is smooth and natural as human drive.  

The paper is organized as follows. Section II describes the path planning in autonomous parallel car parking 

problem. Section III presents our proposed algorithm. Simulation results are presented in Section IV. Section V 

concludes the paper and gives some future works. 

II.  PROBLEM DESCRIPTION 

Position space and position transition 

Each position of the car is represented by the position of the middle of the rear axle and is represented by a tuple 

(x, y, ) where x, y are coordinate in 2D surface and  is the orientation. We denote X the set of positions of the car in 

the considered surface. The movement of the car must satisfy the kinematic model which specifies a new position from 

the current position under a control profile represented by a speed v and a steering angle  (see Figure 2.1). Its dynamic 

is described by following equations: 

  ̇ = vcos() 

  ̇ = vsin() 

̇ = v
      
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Figure 2.1. Illustration of car models 

where L is the distance between the front and rear axles. Most of the research on path planning for cars in the literature 

discreterizes the space by considering a position transition function to specify the set of neighboring positions of the 

current position p with some discrete values of the parameters of the control profile. In this paper, we consider a 

transition function f(p, s, ) that receives a current position p and two control parameters s and  representing the move 

distance and the level of steering angle and returns a neighboring position of p. Values of s and  can be positive and 

negative and are taken from a discrete set. Positive values of s mean moving forward, and negative values of s mean 

moving backward. Positive values of  mean turning left and negative values of  mean turning right. This transition 

function can be specified by experiments for a specific car-like vehicle. We denote N(p, S, ) the neighborhood 

function that specifes the set of neighboring position of p. 

N(p, S, ) = {f (p, s, ) | s  S   } 

Given two positions p1 = (x1, y1, 1) and p2 = (x2, y2, 2), p1, p2  X, we say that p1 and p2 are identical and 

denote p1 
  p2 if |x1 - x2| < 1, |y1 - y2| < 1, and |1 - 2| < 2. Given a set of position P = {p1, . . ., pK}, (P  X) and a 

position p, we say that p belongs to P and denote p   P if there exists i  {1, . . ., K} such that p    pi. 

 

Problem statement 

We make assumption that the car is equipped a sensor that is able the detect obstacles-free region R (for 

example RPLIDAR 360
o
 Laser Scanner). Given an initial position (x0, y0, 0) and a position of the parking lot (x

*
, y

*
, 


*
), the path planning problem consists of finding a sequence of positions (x0, y0, 0), . . ., (xN, yN, N) such that: 

 (xN, yN, N)   
 (x

*
, y

*
, *

), 

 (xi+1, yi+1, i+1)  N((xi, yi, i), S, );  i =  0, 1, . . . , N-1 

 (xi, yi, i)  R,  i= 0, 1, . . . , N 

III. PROPOSED ALGORITHM 

We describe in this section the proposed algorithm. We aim at finding a path with smooth movement 

consideration in the sense that the car will not change the steering angle or the direction too much. 

Elementary movement sequences 

Given a position p0 and a drive control (s, ), the sequence of positions seq(p0, s, , k) = ‹p0, . . ., pk›, where pi = 

f(pi-1, s, ), i = 1, 2, . . ., k is called an elementary movement sequence (or elementary path). Intuitively, an elementary 

movement sequence is a sequence of positions in which the drive control is kept unchanged. Figure 3.1 illustrates 

elementary movement sequences. Algorithm 1 depicts the procedure of generating an elementary movement sequence 

within a obstacles-free region R from a position p using drive control (s, ) with a length constrained.  

The objective of path planning algorithm proposed in this paper is to compute a path that drives the given car 

from the its current position to a specifed parking lot will be a sequence of elementary movement sequences in which 

the number of elementary movement sequences is as small as possible. 
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Input: 

 p: current position 

 maxLen: maximal length of path 

 (s,): drive control (move distance and steering angle) 

 R: obstacle-free region detected by a sensor 

Output: An elementary movement sequence from the position p by 

the drive control (s, )   

1.  P  p; 

2.  pi  p; 

3.  while Length(P) < maxLen do 

4.  p  f(pi, s, ); 

5.  if pi  R then 

6.      P  P::pi; 

7.  else 

8.     BREAK; 

9.   endif 

10. endwhile 

11. return P; 

 
 

Algorithm 1. GeneratePath(p, maxLen, s, , R) 

 

 

 

 

 

 

Figure 3.1. Illustration of elementary movements 
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Input: 

 p0 = (x0,y0,0): initial position 

 P = {(  
 
,   

 
,  

 
), . . ., (  

 
,   

 
,  

 
)}: intermediate target 

positions 

 R: obstacle-free region detected by a sensor 

 : set of discretized steering angles 

Output: path from p0 to one of position of P 

1.  Q  ; 

2.  foreach s  S do 

3.      foreach   do 

4.          P
e
  GeneratePath(p0, maxLen, s, ); 

5.          foreach position p of P
e
 do 

6.              if p    P then        

7.                  return FormPath(p , p0); 

8.              endif 

9.          endfor 

10.        level(P
e
)  1; 

11.        Enqueue(Q, P
e
); 

12.    endfor 

13. endfor 

14. while Q   do 

15.     P  Dequeue(Q); 

16.     foreach i  {1, 2, …, length(P)-1} do 

17.         p  P[i]; 

18.         foreach sS do 

19.             foreach   do 

20.                 P
e
  GeneratePath(p, maxLen, s, ); 

21.                 foreach position p of P
e
 do 

22.                      if p    P then        

23.                           return FormPath(p, p0); 

24.                      endif 

25.                 endfor 

26.                 if level(P) < maxLevel -1 then 

27.                      level(P
e
)  level(P) + 1; 

28.                      Enqueue(Q, P
e
); 

29.                   endif 

30.              endfor 

31.          endfor 

32.     endfor 

33. endwhile 

34. return ;                    

 

Algorithm 2. Path(p0, maxLen, maxLevel, P, S, , R) 

 

The algorithm 

We apply a bi-directional search strategy to find the path from the given initial position (x0, y0, 0) to a target 

parking lot (x
*
, y

*
, *

). In the first step, we find a set of positions P = {(  
 
,   

 
,  

 
), . . ., (  

 
,   

 
,  

 
)}, in which from a 

position (  
 
,   

 
, 

 
) of P the car can move to (x

*
, y

*
,*

) by a path Pi containing no more than   elementary movement 

sequences. In the second step, we find the path from (x0, y0, 0) to one of the positions in P, let say position (  
 
,  

 
, 

 
), 

and then, the car continues following the path Pi computed in the first step to the target position (x
*
, y

*
,*

). The 

remaining of the paper describes the method to solve the problem of finding a path from an initial position p0 = (x0, y0, 

0) to one of the positions of the set P. 

The key idea of our algorithm is based on the breadth-first search fashion and is described as follows. First, we 

try to find a path from p0 to P by one elementary movement sequence. If no such path is found, we try to find a path 

from (x0, y0, 0) to P by two elementary movement sequences, etc. Our proposed method is depicted in Algorithm 2. 

Lines 1-13 try to find a path from p0 to P by one elementary movement sequence in which lines 2-3 scan all drive 
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controls (s, ) in the discretized S and . For each control (s, ), we generate a path P
e
 from p0. Lines 5-9 return a path 

if there exists a position of P
e
 that belongs to P. Otherwise, we set the level of P

e
 by 1 and push it into the queue Q 

(lines 10-11). In the loop (lines 14-33), at each step, a path P in the front of the queue is popped (line 15). Lines 16-20 

generate an elementary movement sequence P
e
 from each position p of P. If there exists a position p

e
 of P

e
 that belongs 

to P, then we return a path from p0 to p
e
 (lines 21-25). Otherwise, we set of the level of P

e
 and push it into the queue Q 

(lines 26-29) if the level does not exceed the maximum upper bound maxLevel. 

IV.  SIMULATION 

Settings 

The configuration of the car in this experiments is described in Table 4.1 in which two gap parameters 

specifying whether two positions are the same (see Section 2.1) are 1 = 0.5 and 2 = 0.005. Table 4.2 presents the 

neighboring position of the position (0,0,0) under different drive control (the angle is measured in rad).  

Table 4.1. Car configuration 

W H L 1 2 

10 20 15 0.5 0.005 

Table 4.2. Transition profile: neighboring positions of position (0, 0, 0) 
 

s  Neighboring positions 

2 0 (1.33, 0, 0) 

2 0.2 (1.33, 0.02, 0.3) 

2 -0.2 (1.33, -0.02, -0.3) 

2 0.52 (1.33, 0.04, 0.8) 

2 -0.52 (1.33, 0.04, -0.8) 

-2 0 (-1.33, 0, 0) 

-2 0.2 (-1.33, 0.02, -0.3) 

-2 -0.2 (-1.33, -0.02, 0.3) 

-2 0.52 (-1.33, 0.04, -0.8) 

-2 -0.52 (-1.33, 0.04, 0.8) 

In this setting, we set two cars at positions (40,35,0) and (95,35,0) and drive the given car at different positions 

to the parking lot between these two cars as illustrated in Figure 4.1. The car is equipped a sensor located in the front of 

the car. We generate 321 different positions (x0, y0, 0) of the given car where x0  {45, 50, 55, 60, 65, 70}, y0  {16, 

17, 18, 19, 20, 21, 22} and 0  {-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3}. We only consider the case that the position of the 

sensor is inside the dash square in Figure 4.1 so that the sensor can detect two square corners A and B from which the 

parking lot can be detected (composed positions from this sampling that are out of scope of of the dash square region 

will be dropped out). 

 

 

Figure 4.1. Parallel parking scenario 

 

 

 

 

For generating intermediate position P, we compute paths with lengths more than 20 so that the intermediate 

positions generated are out of the parking lot region between two cars. Each path from these intermediate position to 

the parking lot contains 3 elementary movement sequences: moves backward - backward - forward (as human 

experiences). The simulation presented in Section 4.2 will show the path from the initial position of the car to one of 

the generated intermediate positions P. All the experiments are conducted on the machine Intel(R) Core(TM) i7-4600U 

CPU, 2.10GHz and 8GB memory. 
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a. Step 1: Path from initial position to an intermediate 

position 

 

 

a. Step 1: Path from initial position to an intermediate 

position 

 

b. Step 2: Path from the intermediate position to the 

parking lot 

 

 

b. Step 2: Path from the intermediate position to the 

parking lot 

Figure 4.2. Illustration of smooth parallel parking  Figure 4.3. Illustration of smooth parallel parking 

 

 

Simulation results 

Partial simulation results are presented in Tables 4.3, 4.4 which show the path from the initial position (x0, y0, 

0) of the car to one of the intermediate position P. Columns 4 and 5 respectively present the number of position 

generated and the number of elementary paths for reaching the intermediate positions. Columns 6 and 7 present the 

time (in seconds) and the length of the path found. The results show that our algorithm is able to find the path from the 

initial position to intermediate positions with no more than 3 elementary paths within 8 seconds. For some easy cases, 

the algorithm find the path very fast with only 1 elementary path and generate only 21 positions. For some more 

difficult cases, the algorithm must generate up to 216131 positions in 7.6 seconds and find the path with 3 elementary 

paths. Figures 4.2 and 4.3 show 2 examples of the paths. We observe that the paths are smooth and natural as human 

experience. 
 

Implementation in a toy car 

We have implemented our algorithm on a toy car with a board Jetson TX1 equiped by a RPLIDAR. The 

proposed algorithm has successfully in finding a path for the toy car to move into the parking lot which is the space 

formed between two boxed as illustrated in Figure 4.4).  

 

 

Figure 4.4. The toy car 
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Table 4.3. Simulation result (part I)  Table 4.4. Simulation result (part II) 

     x0          y0        0            P           L       time         m       x0          y0        0            P            L       time         m 

50 16 0 2609 2 0.078 33 

50 16 0.1 30548 3 0.942 28 

50 16 0.2 16934 3 0.495 28 

50 16 0.3 1203 2 0.047 31 

50 17 -0.1 113203 3 3.319 32 

50 17 0 19735 3 0.579 32 

50 17 0.1 54459 3 1.68 28 

50 17 0.2 2737 2 0.1 27 

50 17 0.3 1195 2 0.027 31 

50 18 -0.2 83468 3 2.741 34 

50 18 -0.1 103712 3 3.334 27 

50 18 0 3241 2 0.114 32 

50 18 0.1 28076 3 0.858 27 

50 18 0.2 1748 2 0.068 28 

50 18 0.3 1125 2 0.015 30 

50 19 -0.2 40396 3 1.326 32 

50 19 -0.1 34948 3 1.144 27 

50 19 0 3287 2 0.11 31 

50 19 0.1 6137 2 0.187 26 

50 19 0.2 1692 2 0.06 27 

50 19 0.3 933 2 0.02 26 

50 20 -0.3 2011 2 0.07 35 

50 20 -0.2 51782 3 1.657 33 

50 20 -0.1 90242 3 2.938 32 

50 20 0 3372 2 0.109 29 

50 20 0.1 6062 2 0.204 24 

50 20 0.2 25476 3 0.813 26 

50 20 0.3 34948 3 1.094 29 

50 21 -0.3 2239 2 0.08 34 

50 21 -0.2 19676 3 0.683 28 

50 21 -0.1 3504 2 0.11 27 

50 21 0 3306 2 0.113 27 

50 21 0.1 25325 3 0.825 23 

50 21 0.2 2926 2 0.104 25 

50 21 0.3 21625 3 0.712 35 

50 22 -0.3 2306 2 0.09 33 

50 22 -0.2 32282 3 1.241 28 

50 22 -0.1 3547 2 0.126 24 

50 22 0 2962 2 0.075 29 

50 22 0.1 2402 2 0.088 27 

50 22 0.2 43773 3 1.618 34 

50 22 0.3 1041 2 0.034 27 

50 23 -0.3 2395 2 0.086 32 

50 23 -0.2 4686 2 0.161 27 

50 23 -0.1 3363 2 0.11 25 

50 23 0 1892 2 0.059 30 
 

 70 16 0 127947 3 3.624 29 

70 16 0.1 99042 3 3.235 39 

70 16 0.2 12200 3 0.388 21 

70 16 0.3 410 2 0.029 21 

70 17 -0.1 36091 3 1.14 23 

70 17 0 141910 3 4.057 23 

70 17 0.1 36817 3 1.11 28 

70 17 0.2 2945 2 0.078 20 

70 17 0.3 383 2 0.01 20 

70 18 -0.2 85639 3 2.733 30 

70 18 -0.1 2873 2 0.11 22 

70 18 0 177693 3 5.7 22 

70 18 0.1 31424 3 1.02 27 

70 18 0.2 2888 2 0.111 22 

70 18 0.3 266 2 0.01 19 

70 19 -0.2 115830 3 3.759 32 

70 19 -0.1 87166 3 3.112 36 

70 19 0 36361 3 1.145 39 

70 19 0.1 1635 2 0.062 25 

70 19 0.2 8453 2 0.279 22 

70 19 0.3 211 2 0.007 19 

70 20 -0.3 36212 3 1.188 23 

70 20 -0.2 8123 2 0.288 29 

70 20 -0.1 109099 3 3.536 36 

70 20 0 27363 3 0.883 23 

70 20 0.1 1431 2 0.046 19 

70 20 0.2 9094 2 0.301 23 

70 20 0.3 31 1 0.001 19 

70 21 -0.3 23118 3 0.77 21 

70 21 -0.2 46837 3 1.525 32 

70 21 -0.1 10410 2 0.42 25 

70 21 0 1791 2 0.074 24 

70 21 0.1 37781 3 1.249 20 

70 21 0.2 2388 2 0.063 19 

70 21 0.3 2601 2 0.092 21 

70 22 -0.3 23576 3 0.984 22 

70 22 -0.2 83962 3 2.783 30 

70 22 -0.1 9601 2 0.344 26 

70 22 0 1829 2 0.052 24 

70 22 0.1 2673 2 0.108 18 

70 22 0.2 1663 2 0.05 13 

70 22 0.3 1873 2 0.038 16 

70 23 -0.3 2019 2 0.089 18 

70 23 -0.2 2963 2 0.11 15 

70 23 -0.1 2048 2 0.065 28 

70 23 0 559 2 0.031 15 
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V. CONCLUSION 

We consider in this paper the path planning problem in autonomous parallel car parking taking into account the 

smooth movements criteria. We proposed a bi-directional algorithm based on breadth-first search for solving this 

problem. The proposed algorithm is easy to implement. Experimental results on different scenarios show that our 

algorithm is able to find a smooth path to drive the car from the given position to the parking lot. We will consider the 

path planning for autonomous cars on partially observable environments. 
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THUẬT TOÁN TÌM ĐƯỜNG ĐI DỰA TRÊN TÌM KIẾM 2 CHIỀU CHO BÀI TOÁN ĐẬU 
XE TỰ ĐỘNG VÀO BÃI TÍNH ĐẾN YẾU TỐ MƯỢT CỦA DI CHUYỂN 

Phạm Quang Dũng, Vũ Thanh Hải, Nguyễn Tuấn Anh, Từ Minh Phương 

TÓM TẮT: Chúng tôi khảo sát bài toán tìm đường đi cho xe di chuyển tự động vào bãi đỗ. Trong ngữ cảnh này, chiếc xe được 

trang bị một cảm biến có thể dò được các chướng ngại vật xung quanh với khoảng cách hữu hạn. Chúng tôi đề xuất thuật toán tìm 

đường đi dựa trên tìm kiếm 2 chiều để cho xe di chuyển từ vị trí hiện tại vào bãi đậu xe tuân theo luật di chuyển của xe. Trong thuật 

toán đề xuất, chúng tôi tính đến tính mượt của di chuyển vì nếu lệnh điều khiển (góc đánh lái, hướng di chuyển) thay đổi quá nhiều 

và vụn vặt thì quãng đường di chuyển không tối ưu và tiêu hao nhiều nhiên liệu. Chúng tôi đã cài đặt thử nghiệm thuật toán đề xuất, 

kết quả chạy mô phỏng cho thấy trong đa số các trường hợp, thuật toán tìm ra đường đi giúp xe di chuyển tự động vào bãi đỗ một 

cách mượt mà như đường đi do lái xe điều khiển dựa trên kinh nghiệm. 

 


