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ABSTRACT: The incorporation of imprecise, linguistic information into logical deduction processes is a significant issue in
computational intelligence. Throughout the literature, we can find all sorts of intelligent inference schemes acting under
imprecision; common to most approaches is their reliance on if-then rules of the kind “IF X is A THEN Y is B”, where A and B are
fuzzy sets (FS) in given universes U and V. While the FS-based theory of approximate reasoning is surely a well-established and
commonly applied one, there is still for further expanding the expressiveness of the formalism. One such improvement can be
obtained by using picture fuzzy sets (PFS), in which the sets A and B are picture fuzzy sets in the corresponding universes U and V.
In this paper, we will contribute to the further development of the picture fuzzy logic (PFL) by presenting some new classes of
implication operators in PFL and firstly defining the Compositional Rule of Chain Inference (CRCI) in a PFL setting. The new
chain inference procedures should be applied in computational intelligence problems
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I. INTRODUCTION

Inference is defined as a procedure for deducing new facts out of existing ones on the basis of formal deduction
rules. Classical paradigms like two-valued propositional and predicate logic, exhibit some important drawbacks that
make them unsuitable for application in automated deduction systems (e.g. for medical diagnosis). To alleviate these
difficulties, Zadeh in 1973 [6] introduced a formalism called approximate reasoning to cope with problems which are
too complex for exact solution but which do not require a high degree of precision.

From a logical perspective, it is interesting to see how people are able to combine such information efficiently in
a Modus Ponens- like fashion to allow for inferences of the following kind:

IF bath water is “too hot” THEN Mrs Wang is apt to get burnt
Bath water is “really rather hot”

Mrs Wang is quite apt to get burnt

With his introduction of a calculus of fuzzy operators Zadeh paved the way towards a reasoning schema called
Generalized Modus Ponens (GMP) to systematize deductions like the example we presented. Since his pioneering
work, many researchers have sought for efficient realizations of this approximate inference scheme. In this paper, we
will contribute to the further development of the picture fuzzy logic (PFL) by presenting some new classes of
implication operators in PFL and generalizing the well-known Compositional Rule of Inference (CRI) by the first
defined Compositional Rule of Chain of Inference in a PFL setting. In Section 2 we will recall the notion of Picture
Fuzzy Sets (PFSs) and some their connectives in Picture Fuzzy Logic (PFL). Section 3 is devoted some new classes of
implication operators in PFL. In section 4 we will formally define the Composional Rule of Chain Inerence (CRCI) and
some concrete computing of the new inference procedures. In fact, we proceed to extend the CRI to a PFS setting and
firstly controduced the new compositional rule of chain inference. Finally, section 5 offers some options for future
research.

II. PICTURE FUZZY SETS

In 2013, we introduced a new notion of picture fuzzy sets (PFS), which are direct extensions of the fuzzy sets [3,
4] and the intuitionistic fuzzy sets [1, 2]. Then some operations on PFS with some properties are considered in [7,8].
Some basic connectives of the picture fuzzy logic (PFL) as negation, t-norms, t-conorms for picture fuzzy sets are
defined and firstly studied in [9, 10].
A. Some basic definitions of the picture fuzzy sets

Definition 2.1 [7] A picture fuzzy set A on auniverse X isan object of the form

A= {(% 11, (00,7, (VA ()X € X
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where 1, (X) €[0,1] is called the “degree of positive membership of x in A", 1,(x) €[0,1] is called the “degree of
neutral membership of x in A” and v, (X) €[0,1] is called the “degree of negative membership of x in A”, and where
Ha, 17, and v, satisfy the following condition:

(X EX) (i ()7, () +Va(0 <D,
and 1—(u, (X)+717,(X) + v, (X)) could be called the “degree of refusal membership” of X in A.
Let PFS(X) denote the set of all the picture fuzzy sets on a universe X .

Basically, picture fuzzy sets based models may be adequate in situations when we face human opinions involving
more answers of the type: yes, abstain, no, refusal.

Voting can be a good example of such a situation as the human voters may be divided into four groups of those
who: vote for, abstain, vote against, refusal of the voting.

PFS is a direct generalization of the fuzzy set was introduced by Zadeh 1965 [5] and the intuitionistic fuzzy set
was proposed by Atanassov 1983 [1].

Definition 2.2 [1] A intuitionistic fuzzy set A on a universe X is an object of the form

A={(% a0 (X),va ()| x e X )},

where ,uA(X)e[O,l] iS called the “degree of membership of x in A”, VA(U)E[O,].] is called the ‘“degree of non-
membership of x inA” ,and u, and v, satisfy the following condition: (VX e X) (u,(X)+v,(X) £1).

Let X, Y and Z be ordinary non-empty sets. An extension for picture fuzzy relations is the following:

Definition 2.3 [8] A picture fuzzy relation is a picture fuzzy subset of X xY ,i.e. R given by
R={(0% ), st (%, Y), 77, (%, Y) Ve (%, Y)) [x € X, y €Y)}
where g : XxY —>[0,1], 75 : X xY —[0,1], v, : X xY —[0,1] satisfy the condition
0< 1, (X, V) +775 (X, Y) +va (X, ¥) <1 for every (X, y) € (X xY).
The set of all the picture fuzzy subsets in X xY is denoted by PFR(X xY).

The composition P« E € PFR(X x Z) of picture fuzzy relations E € PFR(X xY) and P e PFR(Y xZ)was given in [8].

B. Some Picture Logic Operators for PFSs
Consider the set D" = {x = (X, %, %) | X €[0,1F, %, + X, + X, sl}. From now on, we will assume that if xe D",

then X, X, and X, denote, respectively, the first, the second and the third component of x, i.e., X=(X,X,,X%;). We

have a complete lattice (D",<,) defined by

vx,yeD:

X< Y& (% <YX 2 Ve ufx = Y% > )
U =Y % = Y3 % < Y, )

X=y S {X =Y, % =YX =Y,}.

Let x,ye D", Xx=(X,%.%), Y=(¥Y,, Y;). Denote 1(x) ={y=(x,¥,.%):0<y, <x}, VxyeD".
Picture fuzzy negation operators form an extension of fuzzy negations [3] and intuitionistic fuzzy negation
operators [2], and are defined as follows.

Definition 2.4 A picture fuzzy negation operator is a non-increasing mapping

N:D" — D", satisfying N(0..)=1., and N(1,.)=0_., if N(N(x))=x, forall xeD", then N iscalled an
involutive negation operator.
The mapping N, :D" — D", defined by N,(x) =(x,,0,%,), forall xe D", is a picture negation operator. From now

on, if x=(x,%,%)eD’, then X, =1—(X +X, +X;), the mapping N defined by Ng(x)=(X,,X,,%), for all

x e D", will be called the standard negation operator.
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Definition 2.5 [9] Amapping T:D xD" — D" isapicture fuzzy t-normif T satisfies the following conditions:
T(X,Y)=T(y,X), ¥x,yeD".

T(xT(y.2))=T(T(xy).2),vxy,zeD".

T(xy)< T(x2),Vxy,zeD,y< z

T(x1,)el(x),VxeD".

> w b e

Definition 2.6 [9] A mapping S:D"xD" — D" is a picture fuzzy t-conorm if S satisfies all following conditions:
1 S(xy)=S(y,x),vx,yeD".

” S(xS(y.2))=5(S(x.y).z),vx,y,zeD".

3 S(xY)<S(x2),vxy,zeDy< z.

4 S(x,0,.) el(x), vxeD'.

Definition 2.7 A picture fuzzy t-norm T is called representable iff there exist two t-norms t, t, and a t-conorm s,
on [0,1] satisfy: T (X, y)=(t, (X ¥:):t, (%, ¥, ). S5 (% ¥5)), VX, y e D".

Definition 2.8 A picture fuzzy t-conorm S is called representable iff there exist two t-norms t;, t,and a t-conomrm
s, on [0,1] satisfy: S(x,y)=(5;(%.¥:):t, (X, ,):ti (X3, ¥5)), WX, y € D™,

Some examples: Representable picture fuzzy t-norms, for all x,y e D" :
Lo T (xy)=(min(x,y,),min(x,,y,),max(x,y,)).

2. T,(xy)=(min(x,¥,), %Y, max(X;, Y, )).

3. T(x y)=(x1yl,x2y2,max(x3,y3)).

4. T, (%Y)=(X Y1 X You X + Y3 — X5 Ys5)-

{xix\yl if x, vy, =1
0 if x, vy <1
o e[
{x3vy3 if X,Ay,=0
1 if X, Ay, #0
6. T.(xy)- max (0, x, +y, —1), J
max (0, X, + Y, —1),min(1, X, +y,)
7T (xy)= max (0, x, +Y; —1), J
max (0, %, + Y, =1), % + Y; = X;Ys

1
ma\x{z(x1 +y, -1+ xlyl),O},

1
8. T(xy)= max{z(x2+y2—1+x2y2),0}, .

X3+ Y; = XY,

-1
0. T,(xy)= X Y, max (0,, + Y, )-J_
X3t Ys = XY,
0, -1),
10. Tlo(x,y):(max( XY )j

X Yo Xt Y3 — XY,
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Some examples: Representable picture fuzzy t-conorms, for all x,y e D" :
S (X Y) =(max(x,, ; ), min(x,,y, ), min(x;, y; ).

2. S,(xy)=(max(x, ;). %Y, min(x,Y;)).

3. Sy(xy)=(max(x,Y,). %Y, %:Ys )

4 S, (% Y) =04+ Y =X Y1 %Y XY ).

=

X VY,
5. S,(xy)=|[%AY, ifXZVy2=1XAy-
0 if x,vy, <1 ° 7

{leyl if X, Ay, =0

1 if x, Ay,=0’

6. S.(X,y)= .

o (xY) {x3/\y3 if x,vy,=1
Xy A Y,

0 if x,vy,<l1

III. SOME CLASSES OF IMPLICATION OPERATORS FOR PICTURE FUZZY SETS

In this section, we present some classes of implication operators for picture fuzzy sets, which are the direct
generalizations of the classical implication operators and some classes of the fuzzy implication operators (see, for
example [3,4]).

First important class of picture implication operators are the followings.
Let a,beD’, a=(a,a,,a), b=(b,b,,b).

Definition 3.1 A mapping |1 :D"xD” — D", is a picture implication operator of the class 1 if it satisfies the following
boundary conditions:

1(0,,1.)=1_.,where 0_. =(0,0,2),1. =(L0,0). (3.1)
100,,0,) =1, (3.2)
1L, 1) =1, (3.3)
1(L,.,0,.)=0,. (3.4)

Clearly this definition of picture implication operators is a direct generalization of the classical implication and
the definition of fuzzy implication operators given in [3, p. 141].

Another class of the picture implication operators is defined in the following:

Definition 3.2 A mapping | : D" xD" — D", is a picture implication operator of the class 2 if it satisfies the following
boundary conditions: (3.1) - (3.4) and

I(a,b)> I1(a,,b), Va < a,beD (3.5)
I(a,b)< I(ab,), Vb <b,aecD (3.6)

Now we give some direct generalizations of the fuzzy implication operators.

Definition 3.3 Let n(x) be a picture negation operator and let S(x, y) be a picture fuzzy t-conorm operator. A
mapping |:D"xD" — D*, given by:
I(a,b) =S(n(a),b), va,beD" (3.7)
It is a new direct generalization of the fuzzy implications given in the definition 6.1.3 [3, p.146].
Now we give some picture fuzzy implication operators, which are usually referred to in the literature as S-

implications.

Definition 3.4 Let n(x) be a picture negation operator and let S_,, (X,y) be a picture t-conorm operator. A mapping
| :D"xD" — D*, given by:
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For example:

For abeD’, a=(a,a,,a), b=(b,b,b).

Now we obtain new picture implication operators. Since
min(a,b) = (a, Ab,a, Ab,,a;, vb,),

max(a,b) = (a, vb,a, Ab,,a, Ab,), and

n(a) = (a;,2,,a,),

where a,=1- (a,+a,+a,)

We have

1(@.b) = S, (N(@).0) = S, (@5,2,,8,). (B, 1) = (8, vb,,2, Ab, 3, Ab,), VabeD’ (3.9)

Ifweuse n,(a)=(a;,0,a), we obtain
1(8,b) = S, (N (8),0) = ,,, ((85,0,), (B, 1, b,)) = (8, b, 0,8, Ab;), Va,beD’ (3.10)

Picture fuzzy implication operators defined in (3.9) or (3.10) are generalizations of the Kleene-Dienes
implication

I, (%, y) =max(l—Xx, y), where X,y e[0,1], in the fuzzy logic.

Definition 3.5 Let n(x) be a picture negation operator and let S__ (x,y) be a picture t-conorm operator. Let T(X,y)
be a picture t-norm operator. A mapping | : D" xD" — D*, given by:

1(X,y) =S, (N(X),T(X,y), VxyeD" (3.11)

Picture fuzzy implication operators defined in (3.11) is are generalizations of the fuzzy Kleene-Dienes
implication and the picture implication operator given in the definition 3.6.

For example: now we obtain new picture implication operators. If we choose
T (a,b) =min(a,b),

min(a,b) = (a, Ab,a, Ab,,a, vb,),
max(a,b) = (a, vb,a, Ab,,a, Ab,), and
n(a) = (a'?,’aél’al)!

where a,=1- (a,+a,+a,)

We have
I(a,b) =S, (@), T(ab)=S,,((a;a,3a)min(ab)) (3.12)
= (3, v(a Ab).a, A(a, Ab,),8 A8, Vb)), VabeD’

Definition 3.6 A mapping |:D"xD" — D*, given by:
{19* ifa<,1. orb=1.,

r =

OD* otherwise

where r=1I(a,b)eD’, aeD ,beD’,
It is a direct generalization of the standard sharp classical implication operator.

Definition 3.7 A mapping 1:D"xD" — D*, given by:

B 0, otherwise

B {1()* if a<, b,

where r=1I(a,b)eD’, aeD ,beD’,

It is a direct generalization of the standard strict implication operator.
Another picture implication operator is the following:
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Definition 3.8 A mapping |:D"xD" — D*, given by:

1. if a< b,
r=<P
b  otherwise
where r=1I(a,b)eD’, aeD ,beD’,

The proof is direct from the definition 3.8.

Definition 3.9 Let n (a) is a picture negation. A mapping 1:D"xD" — D*, given by:
‘e 1 if a<, b,
max(n(a),b)  otherwise
where r=1(a,b)eD’, acD",beD",

tt is a new direct generalization of the Fodor’s the fuzzy implication and is also an picture implication operator of the
class 2.

Definition 3.10 Let n(x) be a picture negation operator and let S(x,y) be a picture t-conorm operator. Let T(X,Y)
be a picture t-norm operator. A mapping |:D"xD" — D*, given by:

1(X,¥y) =S(n(X), T(x,y)), Vvx,yeD", (3.13)

Now we give concrete operators combining with the concrete picture t-norms and picture t-conorms.

IV. THE COMPOSITIONAL RULE OF CHAIN INFERENCE

A. The compositional rule of inference

The compositional rule of inference (see [3]) constitutes an inference rule in approximate reasoning in which it
is possible to draw vague conclusions from vague premises.

The mathematical pattern of the generalized modus ponens is follows.

Let X and Y be variables taking values in U and V , respectively. Let A , A", and B be fuzzy subsets of
appropriate spaces. From “If X is A then Y'is B ™, and “Y is B*“ can be taken as a logical conclusion.

We consider a relation R ,and A is a subset of U, then the image of the projection of A into V' is the set
B={veV:(uv)eR for someu e A}

In terms of indicator functions,
B(W)= v, {(AxV)(u,v) AR(u,v)} = M {A(U)AR(u,v)}
This can be writtenas B=Ro A , where o isthe composition operator of two sets. When R and A" are fuzzy
subsets of UxV and V , respectively, the same composition Ro A" vyields a fuzzy subset of V .

When applying this procedure to the generalized modus ponens schema

IF X is A
THEN

(X,Y)is R
B =RoA", (4.1)

where R isafuzzy relation on U xV representing the conditional “If Xis A then Y is B”.

Thus if we define R(u,v) = (A(u) = B(v)) where = is a fuzzy implication operator and more generally, the
special t-normT(X,y)=XxAycan be replaced by an arbitrary fuzzy t-norm operator T(u,v)in the composition
operation among relations, leading to the result of the Compositional Rule of Inference (CRI) [3,6]

B'(v) = VAT ((A(U) = B(v)), A(U))} (4.2)

We can choose concrete t-norm operators and concrete fuzzy implication operators to obtain concrete inference
procedures in fuzzy logic.
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B. Compositional Rule of Inference in Picture Fuzzy Logic Setting, PFL-CRI

Let X and Y be variables assuming values in U and V . Consider picture fuzzy facts X is A" and

(X,Y) are R ,where A" ePFS(U), RePFR(U xV) (R isa picture fuzzy relation between U and V).

The PFL-CRI allows us to infer the picture fuzzy fact B .
Expressing this under the form of an inference schema, we get

If Xis A"and (X,Y)is R
then Y is B=RoA" (4.3)

We use a picture fuzzy implication operator I (a,b) to define the picture fuzzy relation R . Given picture fuzzy
sets Ae PFS(U) and B € PFS(V) , we calculate,
(1 (U V), 775 (U, V), v (U, V) =

F(Ceea (U V), 17, (U, V), v (U, V), (2t (U, V), 775 (U, V), v (U, V)
for every (u,v) eU xV, (4.4)

Thus, we defined the picture fuzzy relation R . Using this definition with the picture fuzzy composition operators
of picture fuzzy relations given in [8], it is clear that the PFL- ICR is an extension of the fuzzy-based CRI [5].

Use (4.2) and (4.3) with choosing concrete picture fuzzy t-norms, picture fuzzy implication operators combining
with a concrete picture composition operator, (which was given in [8] we obtain the conclusions of the PFI-ICR.

C. Compositional Rule of Chain Inference

Model la. From practical applications inference procedures in many cases we have make some steps of
inference processes. We have to add information and conditions for computing procedures.

In the model la. the first obtained conclusion B, = Ro A" combining with the new fact X, = A and
R,(B" A X,,Y) with the real factor of (X = A", X, = A7) to inference by the composition rule

B=(A,A")oR,(B A X,Y) (4.4)

V.CONCLUSION

The interest for Picture Fuzzy Sets from the perspective of logical deduction will be continuing to grow. In this
paper, we present some classes of implication operators of picture fuzzy logic and a compositional rule of chai
inference in a picture fuzzy logic setting. Some applications of the inference procedures were given in [14-16] and
some new applications of the new fuzzy theory could be found in [12,13]. We present firstly the compositional rule of
chain inference, giving a class of intelligent inference schema for complex computational intelligence problems. In
next paper, we will develop some concrete inference procedures, (first ones for some computational intelligence
problems were given in [11]), for applying to computing in intelligent systems.
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LUAT HOP THANH CHO CAC SUY DIEN DAY TRONG CAC BAI TOAN TRi TUE
TINH TOAN

Buii Cong Cwong, Pham Vin Chién, Nguyén Thi Thu Ha, Vii Thi Hué

TOM TAT: Quy tdic hop thanh trong suy dién danh cho cac bai toan tri tug tinh todn véi cac thong tin me, bdt dinh déng mét vai tro
quan trong . Can phét trién tinh todn , lp ludn nhuwr thé ndo trong nhiing tinh hinh méi khé khén hon ? Mgt hwéng gidi quyét 12 si
dung 1y thuyét cac tdp me birc tranh. Trong bai b4o nay sau khi trinh bay mét sé lép toan tiz kéo theo trong logic me birc tranh
chiing 16i trinh bay so' dé co ban cho quy tdc hop thanh danh cho cac suy dién ddy — mét luwoc do sé rat 6 ich cho nhiéu lop bai
toan cua tri tué tinh toan.



