
Kỷ yếu Hội nghị Quốc gia lần thứ X về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR), Đà Nẵng, ngày 17-18/08/2017

DOI: 10.15625/vap.2017.00011

DETECT SECURITY THREAT IN ANDROID CUSTOM FIRMWARE BY
ANALYZING APPLICATIONS FRAMEWORK AND DEFAULT SETTINGS

Nguyen Tan Cam
1
, Pham Van Hau

2
, Nguyen Anh Tuan

2

1
 Hoa Sen University

2
University of Information Technology, Vietnam National University Ho Chi Minh City

cam.nguyentan@hoasen.edu.vn, haupv@uit.edu.vn, tuanna@uit.edu.vn

ABSTRACT: Android operating system has become the world's most popular operating system in recent years. Security threat

assessment on the Android operating system becomes imperative. Previous studies focused on analyzing applications on Android

devices. However, security threats may exist in other components of the operating system, rather than in applications. In this study,

we propose a system, uitXFROID, that allows to detect sensitive data leakage in the Applications Framework and security threat

from default settings of Android custom firmware (Custom ROMs) instead of pre-installed applications. The experimental results

show that the system accurately detects cases of sensitive data leakage in the samples that we propose ourselves. Besides, the system

can be used to analyze Android custom ROMs downloaded from the Internet.

Keywords: Custom ROM analysis, Android Framework analysis, sensitive data leakage, ROM default settings.

I. INTRODUCTION

According to Symantec’s statistics [1], they detected 18.4 million mobile malwares in 2016, 5% higher

compared with it in 2015. There are 36.000 new variations of Android malware which belong to 4 new malwares

detected in 2016. According to IDC statistics [2], Android operating system accounts for 85% of mobile operating

system market. As explained in Figure 1, Android operating system has expanded its market recently and continuously

keep on that trend. Another results of Symantec [3] revealed that stealing sensitive data behaviour the most popular one

with 36%.

Figure 1. Worldwide smart phone operating system market share (Share in unit shipments) [2]

Android Operating system has five main components, such as Applications, Applications Framework, Libraries,

Android Runtime, and Linux Kernel [4]. Figure 2 shows the architecture of Android operating system in detailed.

The Application layer provides main applications offer core features of Android Operation system such as

email, SMS messengers, web browser, contact list management,… Application of third-parties can be pre-installed

applications in Android Operating system. This is the reason why we should analyze security threat of pre-installed

applications in Application layer.

The Applications Framework layer provides a full set of Android Operation system’s methods via APIs written

by Java. It offers simple ways to reuse system components and services such as View System, Resource Manager,

Notification Manager, Activity Manager, and Content Providers. Assuming that all pre-installed applications are

benign, security threats still exist in other components of Android Operating system. Applications Framework

94 DETECT SECURITY THREAT OF ANDROID CUSTOM FIRMWARE

component is a special one. It is the reason why security analysis at the Applications Framework layer is necessary

during analyzing security on the Android operating system.

The Libraries layer has libraries written by C and C++ that can support to components and services in

Applications Framework layer.

Figure 2. Android operating system architecture [4]

The Android Runtime is used to run multiple virtual machines on low memory devices by executing DEX files.

Each application runs in a separate Android Runtime instance. This technique reduces the effects of errors caused by

another application.

Linux Kernel is the core component of the Android operating system. Using the Linux kernel allows Android to

inherit important security functions and helps device manufacturers develop their hardware drivers. Security analysis

on the Android operating system can be deployed at this lowest level. Security analysis at the Linux kernel layer can

detect security threats that can not be detected in the upper layers. However, security analysis at this layer will be more

challenges because the gathered information is large and difficult to understand.

Currently, there are many studies perform security analysis on Android firmware [5, 6]. However, these studies

only focus on single application analysis at Applications layer, and default setting analysis in Android firmware. They

didn’t perform security analysis at Application Framework layer.

Michael Grace et al propose Woodpecker [6] to detect sensitive data leakage in Android custom ROMs, by

analyzing each application in these ROMs. This study uses the Control Flow Graph (CFG) to detect any sensitive data

flow. However, Woodpecker only analyzes data flows by using single application analysis instead of multiple

application analysis.

DroidRay [5] analyzes pre-installed applications and default settings of 250 Android custom ROMs in the wild.

To assess the security threats in pre-installed applications, DroidDray uses VirusTotal [7] to scan each application in

the ROM. DroidDray uses single application analysis. Although, DroidRay analyzes more components of the Android

firmware than Woodpecker [6], such as analyzing the /etc/hosts file to detect abnormal URL redirects. However, it

does not conduct sensitive data flow analysis on inter-applications and the Application framework.

In this study, we propose a system, named uitXFROID, that enables to detect sensitive data leakage in Android

custom ROMs by analyzing sensitive data flows in Android Framework layer and default setting of Linux kernel of

Android Operating system.

The main contributions of this study are:

 We propose a method to analyze the security threats in Android custom ROMs by analyzing sensitive data

flow in the Android Framework layer and default setting in Linux Kernel layer of Android Operating system. This is

the first study conducted sensitive data flow analysis at the Android Framework layer and the default settings of

Android custom ROMs.

 We build a dataset that has 10 Android custom ROMs that contain sensitive data leakage scenarios. It can be

used as a reliable dataset of related studies in the future.

Nguyen Tan Cam, Pham Van Hau, Nguyen Anh Tuan 95

 We evaluate the proposed system not only on our dataset but also Android custom ROMs downloaded from

the Internet.

The rest of this paper is organized as follows: The proposed system is described in Section II. The related works

are presented in Section III. Implementation and evaluation are mentioned in Section IV. Section V concludes the

paper.

II. THE PROPOSED SYSTEM

In this study, we propose a system that allows analysis the security threats of Android custom firmware by

analyzing the Android Framework and the default settings in the kernel. Figure 3 shows the main components of the

proposed system.

Custom
ROM

Framework
Extractor

Kernel
Extractor

Framework
analyzer

Kernel
analyzer

Reporter

Figure 3. The proposed system, uitXFROID

There are five main components of the proposed system, uitXFROID, including Framework Extractor,

Framework Analyzer, Kennel Extractor, Kernel Analyzer, and Reporter.

A. Framework extractor

The framework extractor is used to extract the Android Framework from the Android custom firmware. Because

the firmware of different manufacturers use different file system formats. Therefore, the Framework Extractor uses a

variety of techniques to extract the corresponding Android frameworks and Linux kernels.

 In terms of Android custom ROMs has system partition formatted in img, such as ViVo smartphone, we

use the system mount command. The statement is as follows: sudo mount -o loop system.img system/.

Listing 1 shows an example of the mount command.

Listing 1. An example of the mount command.

1 os.system('sudo mount -o loop ' + folderdat + '/system.img ' + tmp)

 In terms of Android custom ROMs have system partition formatted in ftf (Flashtool Firmware), such as

Sony smartphone, we unpacked these Android custom ROMs as a process described in Figure 4.

System.sin
System.ext4

/system

unpacked sin2ext4.jar

Partition mouting

Copy Android framework from
/system/framework

Android
Firmware in

FTF

Figure 4. The process is used to extract Android framework from Android custom ROMs in FTF and SIN format

Figure 4 describes the extracting process that mentions four steps as follow:

Step 1: Extract the .ftf file to get the system.sin file by using Python’s zipfile module.

Step 2: Convert system.sin file to system.ext4 by using sin2ext4.jar. In this study, we developed sin2ext4.jar

based on Flashtool tool [8].

Step 3: Mount the .ext4 file to the folder /system.

Step 4: Copy Android framework files in folder /system/framework.

96 DETECT SECURITY THREAT OF ANDROID CUSTOM FIRMWARE

 In terms of Android custom ROMs with /system partition in .dat format, such as CyanogenMod,

Resurrection Remix. The extracting steps are shown in Figure 5.

system.new.dat

system.img

/system

unpacked sdat2img.py

Partition mounting

Copy Android framework from
/system/framework

Android
Firmware in

ZIP

system.transfer.list

Figure 5. The process is used to extract Android framework from Android custom ROMs in ZIP and dat format

In the first step, we extract the Android custom ROM's ZIP file to get the system.new.dat and system.transfer.list

files. To unzip the zip file, we uses the Python’s zipfile module. Listing 2 shows an example of zipfile module using.

Listing 2. An example of zippfile module using

1

2

3

with zipfile.ZipFile(rom,"r") as zip_ref:

 zip_ref.extract('system.new.dat', folderdat)

 zip_ref.extract('system.transfer.list', folderdat)

In the second step, we use sdat2img.py. This is an open source tool that unzips system.new.dat (sparse file) into

system.img (raw image). This tool requires system.new.dat and system.transfer.list files as the input files. We use

python sdat2img.py <transfer_list> <system_new_file> [system_img], such as python

sdat2img.py system.transfer.list system.new.dat system.img. Listing 3 shows an example

of sdat2img.py used in this module.

Listing 3. An example of sdat2img.py

1 call(["python", "./sdat2img.py", folderdat +

"/system.transfer.list", folderdat + "/system.new.dat", folderdat +

"/system.img"])

In the third step, we mount the system.img file to the folder /system to copy the Android framework files, such

as sudo mount -o loop system.img system/.

B. Framework Analyzer

This module is used to analyze the risk of leakage of sensitive information in the Application framework layer

of Android custom ROMs. From Android frameworks extracted from the Framework Extractor module, this module

conducts analysis of potentially sensitive information flows.

In this study we created a virtual main method to create a starting point for data flow analysis in the framework

layer. However, unlike Android applications, the Android Framework has a lot of methods (each framework has an

average of 65,100 methods). Therefore, we selected the difference methods between the Android Framework of custom

ROMs needed to analyze and the Android Framework from Android standard ROMs before creating the virtual main

method. In this study, Android standard ROMs are from Google official website or Android custom ROMs verified

safe in previous analysis. The procedure is described in Figure 6.

Nguyen Tan Cam, Pham Van Hau, Nguyen Anh Tuan 97

Android
Firmware

Framework
Extrator

Android Framework

Generate
virtual Main

method

Build Call
Graph

Perform Taint
Analysis

Shortlist
different
methods

Detect
sensitive data

flow

Android Framework
from standard ROMs

Figure 6. The process is used to extract Linux kernel from Android custom ROMs of ASUS

Step 1: List down methods in Android custom ROM which are different from methods of Android standard

ROMs.

Step 2: Create the virtual main method for these selected methods in Step 1.

Step 3: After shortlisting the different methods and creating the virtual main method, we conduct sensitive data

flow analysis in the Application framework.

We proposed a system based on FlowDroid [9] to analyze sensitive data flows in the Application framework

(After creating the virtual main method in Step 3). Framework analyzer uses this system to detect all possible sensitive

data flows that started by sensitive source system calls and ended by critical system calls. The list of these system calls

is listed in SuSi [10].

C. Kernel Extractor

Kernel Extractor is a module used to extract the kernel of Android custom ROMs. The procedure for extracting

the kernel from Android custom ROMs can be summarized in four steps as follow:

Step 1: Locate and extract the boot image from the Android custom ROM.

Step 2: Extract the boot image into difference components, including zImage.

Step 3: Split zImage into difference components, to extract the compressed kernel from the zImage

decompression.

Step 4: Detect the compression type of the kernel and unpack it with the appropriate tools.

The steps of this process can be used for all firmware of different vendors, but there are some changed points

which applied for different vendors because of different firmware structures and file formats. The Linux kernel

extracting are showed in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12.

boot.img
Android

Firmware of
ASUS

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

unpacking split_boot decompressing

Figure 7. The process is used to extract Linux kernel from Android custom ROMs of ASUS

boot.img
Android

Firmware of
NEXUS

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

unpacking

split_boot decompressing

Zipped file

unpacking

Figure 8. The process is used to extract Linux kernel from Android custom ROMs of NEXUS

98 DETECT SECURITY THREAT OF ANDROID CUSTOM FIRMWARE

boot.img

Android
Firmware of

Motorola

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

unpacking split_boot decompressing

XML file

CG35.img
(boot.img)

sbf file
sbf_flash

Figure 9. The process is used to extract Linux kernel from Android custom ROMs of Motorola

 .cab file
Android

Firmware of
LG

 .bin files and
.tot files

 .bin file and .tot
file

LGextractor 7z

File merging

 .wdb file and
.dll file

decompressing
boot.img

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

LGextractor

split_boot LGbinExtractor

Figure 10. The process is used to extract Linux kernel from Android custom ROMs of LG

 .tar.md5 file
Android

Firmware of
Samsung

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

unpacking

split_boot

decompressing

 .tar file

Converting
to .tar file

boot.img
unpacking

Figure 11. The process is used to extract Linux kernel from Android custom ROMs of Samsung

kernel.sin
Android

Firmware of
Sony

Ramdisk,
Compressed

Kernel

Ramdisk,
Decompressed

Kernel

unpacking

7z

decompressing

Files from
kernel.sin

magic ELF
detecting

Figure 12. The process is used to extract Linux kernel from Android custom ROMs of Sony

Nguyen Tan Cam, Pham Van Hau, Nguyen Anh Tuan 99

D. Kernel Analyzer

The Kernel Analyzer is a module used to analyze sensitive information leakage risks in the Linux kernel of

Android custom ROMs, and the default settings are likely to cause security risks.

In this study, we analyze the default setting such as USB debugging, WiFi, Bluetooth, allow to access with SU

Access, checking the existence of abnormal IP addresses /etc/hosts to detect the URL redirection. Default settings are

stored in default.prop file in the Ramdisk extracted from Kernel Extractor or other files such as /etc/hosts. Figure 13

shows the contents of default.prop file in the Ramdisk of ASUS A66A device.

Figure 13. The contents of default.prop file in the Ramdisk of ASUS A66A device

In this study, we analyze default settings that listed in Table 1.

Table 1. Default settings is analyzed

No Default settings Value

1 SU access Having SuperSU.apk

2 URL redirection Having any abnormal IP address in /etc/hosts

3 USB Debugging ro.debuggable=1

4 ADB shell via WiFi service.adb.tcp.port = a port number

5 ADB shell root mode ro.secure=0

E. Reporter

Module Reporter is a module used for summarizing the analyzed results from modules: Framework analyzer,

and Kernel analyzer. This module allows exporting the result of integrated analysis to JSON format to provide

information to the user and the web application interface layer. Figure 14 shows an example of an analytical result

from the Kernel Analyzer that the Reporter module provides to the user and the web interface layer.

Figure 14. An example report from Kernel analyzer

100 DETECT SECURITY THREAT OF ANDROID CUSTOM FIRMWARE

III. EVALUATION

F. Hardware configuration

The proposed system is deployed on the evaluating system that has the hardware configuration showed in Table 2.

Table 2. Hardware configuration of the evatuating system

Component Value

CPU Intel Core i7-4720HQ

Memory 16 GB

HDD 1TB, 7200 rpm

G. Dataset

In this study, we propose a dataset. This dataset has 10 Android custom ROMs that contain sensitive

information leakage scenarios described in Table 3.

Table 3. Our samples in the proposed dataset.

No Source Type Sink Type Note

1 Contact list Socket Leak the contact list via a socket to a service on the Internet.

2 Contact list SMS Leak the contact list via SMS.

3 GPS+IMEI Socket Leak user location via a socket.

4 GPS+IMEI SMS Leak user location via SMS.

5 IMEI Socket Leak device ID via a socket.

6 IMEI SMS Leak device ID via SMS.

7 Call log Socket Leak call log via a socket to a service on the Internet.

8 Call log SMS Leak call log via SMS.

9 Contact list Internet Leak the contact list via HTTP.

10 Call log Internet Leak call log via HTTP.

H. Experimental results

In this study, we tested the proposed system with the proposed dataset and 290 Android custom ROMs

downloaded from the Internet. The experimental results show that the system accurately detects cases of sensitive

information leakage at the Framework layer in our Android custom ROMs. Listing 4 describes an analysis result from

the proposed system for the fifth sample in Table 3. The results of this analysis indicate that the system correctly

detects the sensitive information leakage.

Listing 4. An example of the Framework layer analysis results of Android custom ROMs.

{

 "analyzeTime": {

 "date": {

 "year": 2017,

 "month": 4,

 "day": 27

 },

 "time": {

 "hour": 14,

 "minute": 33,

 "second": 50,

 "nano": 60000000

 }

 },

Nguyen Tan Cam, Pham Van Hau, Nguyen Anh Tuan 101

 "totalDuration": {

 "seconds": 19,

 "nanos": 671000000

 },

 "frameworkName": "Leak_IMEI_Socket.jar",

 "frameworkHash":

"1216c927c6d7206d1007fef5bd269f06e059a5740b667eeba129cd25f353fec7",

 "sizeInByte": 6576366,

 "numberOfAnalyzeMethods": 6,

 "analyzeMethods": [

 "<android.hardware.camera2.CameraManager:

android.os.PowerManager$WakeLock -

get0(android.hardware.camera2.CameraManager)>",

 "<android.hardware.camera2.CameraManager$1: void

onTorchModeChanged(java.lang.String,boolean)>",

 "<android.hardware.camera2.CameraManager$1: void

onTorchModeUnavailable(java.lang.String)>",

 "<android.hardware.camera2.CameraManager$1: void

<init>(android.hardware.camera2.CameraManager)>",

 "<android.hardware.camera2.CameraManager: void

<init>(android.content.Context)>",

 "<android.app.Activity: void onCreate(android.os.Bundle)>"

],

 "numberOfFlow": 1,

 "flows": [

 {

 "source": "$r9 = virtualinvoke

$r19.<android.telephony.TelephonyManager: java.lang.String getDeviceId()>()",

 "sink": "virtualinvoke $r2.<java.io.DataOutputStream: void

writeUTF(java.lang.String)>($r9)",

 "sourceMethod": "<android.telephony.TelephonyManager:

java.lang.String getDeviceId()>",

 "sinkMethod": "<java.io.DataOutputStream: void

writeUTF(java.lang.String)>",

 "pathLength": 2,

 "path": [

 "virtualinvoke $r2.<java.io.DataOutputStream: void

writeUTF(java.lang.String)>($r9)",

 "$r9 = virtualinvoke $r19.<android.telephony.TelephonyManager:

java.lang.String getDeviceId()>()"

]

 }

]

}

102 DETECT SECURITY THREAT OF ANDROID CUSTOM FIRMWARE

In this study, we don’t conduct sensitive data flow at Linux kernel layer of Android custom ROMs yet.

However, we succeed in the Linux kernel extraction task. This task is very important to conduct sensitive data flow at

Linux kernel layer in the future. The experimental results of this task are showed in Table 4.

Table 4. The experimental results of Kernel extractor

Vendor Number of Android

custom ROM

Number of Android custom

ROM are detected correctly

The number of Linux kernel

are extracted correctly

Time

(second)

Asus 6 6 4 1.204

LG 8 6 7 140.326

Motorola 7 7 4 7.485

Nexus 6 0 6 21.42

Samsung 20 6 15 7.861

Sony 25 7 19 0.995

Others 151 - 138 4.515

The experimental results in Table 4 show that the proposed system detects correctly the vendor name of the

corresponding Android custom ROMs with 44.5%. The success rate of Kernel extraction is 96.5%. The results show

that Kernel Extractor module is effective in extracting Linux Kernel to analyze sensitive data flow by Kernel analyzer

module.

Table 5 shows the results related to analyzing default settings of Android custom ROM in the wild. The results

show that there are many Android custom ROMS contain SuperSU application and allow end user accesses to the

system shell with root privilege. This finding leads to a conclusion that there are many security threats that are existing

in Android custom ROMs in the wild.

Table 5. The results of analyzing default settings of Android custom ROMs in the wild

No Type of default setting Number of Android

custom ROMs

The rate of ROMs

contain security threat

1 Contain SuperSU.apk 23 7.9%

2 Enable “ADB shell over WiFi” 3 1.0%

3 Enable “USB Debugging” 15 5.2%

4 Enable “ADB shell root mode” 14 4.8%

5 /etc/hosts file contains any abnormal IP address 6 2.1%

IV. RELATED WORKS

Until now, there are some findings of researches on analyzing security risks can be hidden in Android firmware

[5, 6, 11, 12]. DroidRay [5] is proposed to analyze vulnerable gaps on Android firmware by conducting scanning

process on pre-installed applications and default settings in Android firmware. At app-level, they extract all apk files in

Android firmware, then uploading these files to VirusTotal for online malware scanning. In DroidRay, they don’t

analyze data flows in Android applications, it just uses results of VirusTotal detect security threat in apk files. Beside

that, they analyze default settings of custom ROMs such as information of /etc/hosts or default shell mode.

Michael Grace et al. proposed Woodpecker [6] to detect sensitive data leakage in pre-installed apps of Android

firmware. They used Soot [13] to analyze the sequences of calling functions in Android apps to address the data path

from initiative functions in AndroidManifest.xml to sensitive functions, such as sendTextMessage. Woodpecker does

not analyze inter-app communications, so it can not detect sensitive data flows through multiple applications. They also

don’t analyze security at Application Framework layer.

Aafe et al. proposed DroidDiff [11] to evaluate security threat in Android firmware by considering firmware

configuration to determine its inconsistency from manufacturer’s specification documents. DroidDiff does not analyze

sensitive data flows in applications and Application Framework layer.

Zhou et al. proposed ADDICTED [12] to detect dangerous changes of device manager component in Android

firmware. They use dynamic analysis technique to record calling systems in standard firmware (Android Open Source

Project) [14] and custom ROMs. In the next step, they find the differences among firmware to determine what security

threat containing in Android custom ROMs. They don’t analyze sensitive data flows at application layer and

Application framework layer.

V. CONCLUSION

In this study we proposed a method to detect sensitive data leakage in Android custom ROMs by analyzing

sensitive data flow in Android Framework layer and default settings. The experimental results show that the system,

Nguyen Tan Cam, Pham Van Hau, Nguyen Anh Tuan 103

uitXFROID, of the proposed method accurately detects cases of sensitive information leakage at the application

framework layer in our Android custom ROMs. It also detects security threats in several Android custom ROMs in the

wild by analyzing their default settings. The experimental results also show that the proposed system can accurately

extract Linux kernel of Android custom ROMs in the wild to support for sensitive data flow analysis at Linux kernel

layer in the future.

ACKNOWLEDGEMENT

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number

B2016-26-01

REFERENCES

[1] Symantec. (2017, June 01). 2017 Internet Security Threat Report. Available:

https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

[2] IDC. (2017, July 10). Smartphone OS Market Share, 2016 Q3. Available: http://www.idc.com/promo/smartphone-

market-share/os

[3] Semantec. (2015, May 10). 2015 Internet Security Threat Report, Volume 20 Available:

http://www.symantec.com/security_response/publications/threatreport.jsp

[4] (2016, 10/10). Android Platform Architecture. Available: https://developer.android.com/guide/platform/index.html

[5] M. Zheng, M. Sun, and J. C. S. Lui, "DroidRay: a security evaluation system for customized android firmwares,"

presented at the Proceedings of the 9th ACM symposium on Information, computer and communications security,

Kyoto, Japan, 2014.

[6] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, "Systematic Detection of Capability Leaks in Stock Android

Smartphones," in The 19th Annual Network & Distributed System Security Symposium, 2012.

[7] Virustotal.com. (2016). Virustotal. Available: https://www.virustotal.com

[8] (2017). FlashTool. Available: https://github.com/Androxyde/Flashtool

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, et al., "FlowDroid: precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis for Android apps," presented at the Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh, United

Kingdom, 2014.

[10] S. Rasthofer, S. Arzt, and E. Bodden, "A Machine-learning Approach for Classifying and Categorizing Android

Sources and Sinks," 2014.

[11] Y. Aafer, X. Zhang, and W. Du, "Harvesting Inconsistent Security Configurations in Custom Android ROMs via

Differential Analysis," presented at the USENIX SECURITY, 2016.

[12] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, "The Peril of Fragmentation: Security Hazards in Android

Device Driver Customizations," presented at the Proceedings of the 2014 IEEE Symposium on Security and

Privacy, 2014.

[13] E. B. Patrick Lam, Laurie Hendren. Soot: a Java Optimization Framework. Available: https://sable.github.io/soot/

[14] Google. (2017, March 10). Android Open Source Project. Available: https://source.android.com/

PHÁT HIỆN NGUY CƠ BẢO MẬT TRONG CÁC ROM ANDROID TÙY BIẾN
BẰNG CÁCH PHÂN TÍCH THÀNH PHẦN APPLICATION FRAMEWORK

VÀ CÁC CẤU HÌNH MẶC ĐỊNH

Nguyễn Tấn Cầm, Phạm Văn Hậu, Nguyễn Anh Tuấn

TÓM TẮT: Hệ điều hành Android là hệ điều hành phổ biến nhất trong các năm gần đây. Đánh giá nguy cơ bảo mật trong hệ điều

hành Android trở nên cấp thiết. Các nghiên cứu trước chủ yếu phân tích các ứng dụng trên thiết bị Android. Tuy nhiên, nguy cơ bảo

mật có thể tồn tại trong các thành phần khác của hệ điều hành Android chứ không chỉ riêng các ứng dụng. Trong nghiên cứu này,

chúng tôi đề xuất hệ thống uitXFROID cho phép phát hiện rò rỉ thông tin nhạy cảm trong thành phần applications framework và

nguy cơ bảo mật từ cấu hình mặc định của các ROM Android tùy biến. Kết quả thử nghiệm cho thấy hệ thống phát hiện chính xác

các trường hợp gây rò rỉ thông tin nhạy cảm trong các mẫu thử được đề xuất. Bên cạnh đó, hệ thống làm việc tốt với các ROM

Android tùy biến được tải từ Internet.

http://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.virustotal.com/

