
Kỷ yếu Hội nghị Quốc gia lần thứ X về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR), Đà Nẵng, ngày 17-18/08/2017

DOI: 10.15625/vap.2017.00023

FLEXIBLE PROOF-OF-WORK:

A DECENTRALIZED UNPREDICTABLE NUMBER GENERATOR

Trần Anh Dũng1, Nguyễn Đức Đình Nghĩa1, Đặng Minh Tuấn2,

Nguyễn An Khương3, Huỳnh Tường Nguyên3

1
Infinity Blockchain Labs Co., LTD;

2
Vietkey Group;

3
Trường ĐH Bách Khoa, Tp. Hồ Chí Minh

{dungta, nghiandd}@blockchainlabs.asia; dangtuan@vietkey.vn; {nakhuong, htnguyen}@hcmut.edu.vn

ABSTRACT: We propose a new proof-of-work protocol called “Flexible Proof-of-Work” to generate an unpredictable set of

numbers. This can be seen as a component of a general framework for a decentralized random number generator. The algorithm

ensures experimentally that the result is feasible and unpredictable. Moreover we demonstrate that the algorithm can be easily

implemented on Ethereum blockchain system by smart contracts, and miners who have limited resource are still able to compute

solutions. Meanwhile during the process, the problems are changing continuously by taking new solutions into account, making an

adversary hard to attack the protocol by pre-calculating the final results.

Keyworks: Unpredictable number generator, decentralized system, blockchain, proof-of-work.

I. INTRODUCTION

Random numbers have important roles in many applications, especially in lottery, statistical sampling, computer

simulation, cryptography. Proving the true randomness is always significantly challenging that need to be overcome,

and contains pitfalls that need to be avoided. Nowadays, with the advantages of blockchain technology, that problem

can be solve by means of a decentralized system. Our ultimate is to construct a decentralized algorithm for generating

random numbers (dRNG) openly and transparently, but still secure. We propose that this general dRNG framework

should consists of (i) a proof-of-work (PoW) protocol for generating solution set; (ii) the guidelines in selecting the

appropriate solutions; and (iii) an protocol resists against both fraud and strategically withholding secret values (selfish

mining). Such a general framework has to be ensured that attempts at manipulating and predicting the result were

unsuccessful. In this paper we only focus on the first module for generating solution set, called Flexible Proof-of-Work.

II. RELATED WORKS

Random numbers can be generated by a random bit generator which can be defined as a device or algorithm

whose output is a sequence of statistically independent and unbiased binary digits [15]. Generators that produce

random sequences (RNGs) can be classified into two types: Pseudo Random Number Generators (PRNGs) by using

mathematical algorithms (deterministic); and True Random Number Generators (TRNGs) by using physical process

(non-deterministic).

In practice, one might use the NIST’s Beacon
1 as a source of public randomness. This Beacon ensures the

unpredictability, autonomy, and consistency. “Unpredictability means that users cannot algorithmically predict bits

before they are made available by the source. Autonomy means that the source is resistant to attempts by outside

parties to alter the distribution of the random bits. Consistency means that a set of users can access the source in such a

way that they are confident they all receive the same random string.”

1. Pseudo Random Number Generators

PRNG uses deterministic digital process by a digital algorithm via softwares. These RNGs are based on

algorithms implemented on finite-state machines to produce pseudo-random determinism sequences from initial values

called seeds in mathematical processes.

PRNG are much more cost effective and thousands of times faster than hardware-based RNG. The PRNG

should achieve excellent statistical properties, fast execution time, repeatability, reproducibility, and its security must

be based on the difficulty to solve the related mathematical problem. However, because the output is a function of the

seed state, the actual entropy of the output can never exceed the entropy of the seed. Hence, the randomness level of

the pseudo-random numbers depends on the level of randomness of the seed. And the pseudo-random number has a

deterministic sequence, which may be anticipated by a hacker if an initial condition of the pseudo-random number

system is revealed.

1
 https://www.nist.gov/programs-projects/nist-randomness-beacon

mailto:%7bdungta,%20nghiandd%7d@blockchainlabs.asia
mailto:dangtuan@vietkey.vn
mailto:nakhuong,%20htnguyen%7d@hcmut.edu.vn
http://www.nist.gov/programs-projects/nist-randomness-beacon

186 FLEXIBLE PROOF-OF-WORK: A DECENTRALIZED UNPREDICTABLE NUMBER GENERATOR

2. True Random Number Generators

TRNG uses hardwares or non-deterministic physical nature processes such as quantum random processes,

thermal noise of a resistor, short noise of a (p−n) junction of a semiconductor, photon noise, atmospheric noise, free-

running oscillators, frequency jitter in oscillator, and chaotic laser [20, 21] to ensure the randomness.

Because the physical nature cannot be predicted, the physical random number is more appropriate for protecting

private information. Furthermore, they produce continuous time analog signals which are often called noise. However,

noise intensity of the underlying physical phenomenon on which the random number is based is typically small, and

thus a high voltage is required to convert the small noise to a random number. These are also called hardware-based

random number generators because of the use of the randomness aspect in the hardware. They could be sampled by

digitization, and post-processing techniques can be implemented to improve the randomness. TRNGs should be

unpredictable, unreproducible, and statistically unbiased.

Among traditional techniques have been used for generating truly random numbers are the Integrated Circuit (IC)

RNG designs [19]. In this direction, there are several approaches, i.e., by amplification of a noise source [2, 12], by

jittered oscillator sampling [9, 11, 13, 19], by discrete-time chaotic maps [3, 6, 7, 8, 25, 28], or by continuous-time chaotic

oscillators [20, 24]. In spite of the fact that, the use of discrete-time chaotic maps in the realization of RNG is well-known

for some time, it was shown recently that continuous-time chaotic oscillators can also be used to realize a TRNG.

In comparison with RNGs based on discrete-time chaotic maps, amplification of a noise source and jittered

oscillator sampling, it is seen that RNGs based on continuous-time chaotic oscillators can offer much higher and

constant data rates without post-processing and generate of high fractal dimension chaos with no substantial increase

on complexity.

3. Decentralized Random Number Generators

Although numerous algorithms for RNG have been developed, most of them are pseudo-random number

generator (PRGN). Recently, using the leverage of blockchain technology, some random number generator (RGN)

algorithms have been developed on decentralized systems (dRNGs) see [27], or based on public randomness [15]. In

our opinion, the dRNGs can be seen as a subclass of the PRGNs, but with significantly high quality of the randomness

due to the pools where entropy were collected, i.e., blockchain’s entropy.

Most recently, Popov [23] propose an algorithm permitting a large group of individuals to reach consensus on a

random number, without having to rely on any third parties. The algorithm works with high probability if there are less

than 50% colluding parties in the group. The proposed algorithm has some limitations due to its assumptions that there

is one group has to have at least one honest participant, and no group consist entirely of colluding parties.

In [1] the authors used Bitcoin as a public randomness source to propose two protocols generating an

unpredictable beacon and constructing arbitrary multi-party computation protocols. And in [5], the author proposed a

beacon from Bitcoin blockchain which requires no trusted parties. They used the advantages of Bitcoin blockchain to

directly compute the financial cost of attempting to manipulate the beacon output.

However, in [20], the authors presented negative results with regard to Bitcoin-based randomness extraction by

showing how an adversary could manipulate these random numbers, even with limited computational power and

financial budget. Furthermore, in [4] the authors proved that no protocol can achieve an arbitrarily small bias when the

adversary has an infinite budget, but they positively proposed beacon protocols that defeat a budget-restricted

adversary.

As our main contribution in this work, we propose a decentralized protocol generating unpredictable sets of

solutions such that no playing party will be able to predict or manipulate the results.

III. PROPOSED APPROACH

1. Problem Statement and Assumptions

Our RNG problem is that, for a given number with a predictable risk, a blockchain based system - the INPUT,

we have to construct a transparent and non-deterministic process which can produce an unpredictable set of numbers

(i.e., it cannot predict all these numbers)-the OUTPUT. In this problem, we have to make two following assumptions.

 Assumption 1. Blockhash (BlockId) is unpredictable;

 Assumption 2. Time period for creating a given number of blocks from a given block in a blockchain-based

system is unpredictable.

The Assumption 1 is naturally reasonable because it is widely accepted that suitable hashing functions, i.e.

Keccak, can be used as PRNGs, and Bitcoin can also be used as a randomness source. Therefore we can treat block-

headers as random sources and unpredictable, and combining with hashing function might assume that BlockIds are

unpredictable.

Trần Anh Dũng et. al. 187

2. General idea of the algorithm

From a given seed (i.e., Blockhash, BlockID) x0, we determine a finite set of solutions. This solution set will be

used to determine the seed for the next iteration. More precisely, we have the following process

x0→seed1→{x11, x12, ….}→seed2→{x21,x22,…}→seed3→{x31,x32,…} . . .

We define the seedi’s (i ≥ 1) as follows. Suppose in this stage that in the (i-1)
th

 round, the secret values x(i-1)j

(solutions) have been computed successfully by some function Find(.) (to be specified later).

Then let

v
(i−1)j = H1(x(i-1)j), j = 1, 2, . . .

be the digest of x
(i-1)j by a suitable hashing function H1 (i.e., the well-known SHA-3, Keccak hashing function,...).

We then compute

v
i-1 = v

(i-1)1 ⊕ v
(i-1)2 ⊕ v

(i-1)3 ⊕ ...

We propose the (common) fingerprint Fi of the x
(i-1)j ’s as follow

Fi:= [(vi-1 >> β) ⊕ vi-1]%2
β

,

where “>> β” is the β-bit right shift operator, and “⊕” is the Exclusive OR (XOR) operator, and initially, we take v0 =

H1(x0).

We now define

seedi := Fi, (i = 1, 2, . . .).

Overall, the values are determined in the following order

 x0 → v0

→ F1 → {x11, x12, . . .} → {v11, v12, . . .} → v1

→ F2 → {x21, x22, . . .} → {v21, v22, . . .} → v2

. . .

Remark. In practice, the parameter β has to be specified, depending on the word-size of the computational

system. In our experiment (see Section 4), we consider β = 128.

3. Description of the Algorithm

In the proposed algorithm, the key point is that all playing parties have to choose themselves suitable strategies

Find(.) in order to find random numbers xij in the i
th

 round such that their digests have the same number nij = ei (for

given ei) of bits 1 with those in the fingerprints of solutions found in the previous round.

More precisely, let ei be the difficulty of the problem at the i
th

 round. This number will be adjusted increasingly

by Era timeout

ei = Adjust(ei-1): Difficulty increased in each Era,

and in the Section 4, for the experiment, we currently increase ei by one unit per Era. Let e0 = α, a given difficulty level

to be specified later. Then the miners on the blockchain have to find xij such that if

vij = H1(xij), mij = H2(Fi||vij), and nij = NoIB(mij),

then we must have

nij = ei, and vij ∉ V,

where V is the set of digests of solutions up to the previous round, and

 H2 is also a suitable hash function (i.e., the well-known SHA-3, Keccak hashing function, ...)

 NoIB(mij): Number of identical bits between Fi and mij

In summary, let

 Era timeout: be the product of θ and blocktimeout, and

188 FLEXIBLE PROOF-OF-WORK: A DECENTRALIZED UNPREDICTABLE NUMBER GENERATOR

 Stop criterion: be the case that Era timeout is passed or we couldn’t found any solution in this Era, meaning

that Xi = ∅, then we have the following algorithm (see Algorithm 1.)

Algorithm 1. Flexible Proof-of-Work.

Remark. 1. It is clear that this process is non-deterministic, therefore the generated OUTPUT is truly random,

since the seed is an unpredictable number (according Assumption 1), and the Era timeout (θ) guaranteeing the

variation of number of solutions found in a given iteration (era) is also unpredictable (according Assumption 2).

2. Although function Find(.) can be implemented by brute-force algorithm, in practice it should use a

randomized algorithm (such as OpenSSL) in order to get more trustworthy on unpredictability.

3. We can easily see that the correctness of the proposed algorithm is ensured, since the probability of

successfully finding out solutions is nonzero and small enough for suitable parameters in the input. Indeed, the

probability for a randomly chosen string x having e bits in common with a given β− bit string is

()

 (1)

IV. EVALUATION

In this section we conduct an experiment to evaluate our proposed algorithm on Ethereum block chain system.

In this experiment, we consider the following setting.

 Find(.): The strategy to find 256-bit numbers,

 β = 128,

With β = 128, the plot of probability distribution given in the equation (1) versus e is given below, see Figure 1.

This plot suggests that in practice, for β = 128, the difficulty e should be set from e0 = α = 64, and each ei should

be adjusted increasingly one unit by Era timeout. For five difficulties

e ∈ {69, 74, 79, 84, 89}

with the further settings that the BlockId is at the block 3000100:

3b922104b70c94b592659573a65c60fe2f225e395a542e48de5dc5a8269fe94f

Trần Anh Dũng et. al. 189

on Ethereum block chain
2
, Era time out θ = 2 × 10

6

ns, we obtain the following plot
3 showing the running time in

number of solutions found, see Figure. 2.

Thus our experimental result ensures the feasibility and the correctness of the proposed algorithm in Subsection

3.3 since it demonstrates a suitable range of difficulty degree ei such that it is possible for finding solution(s), and

moreover it also indicates a suitable value θ such that solutions have been found are hard to predict.

Figure 1. Probability for finding out solution x against difficulty e.

Figure 2. Running times against number of solutions

V. CONCLUSION AND FUTURE WORKS

We’ve proposed a so-called Flexible Proof-of-Work protocol for generating unpredictable sets of random

numbers. Our experiment shows the feasibility of the algorithm and the unpredictability of the result. Moreover the

experiment also shows that a party with limited computational power is still able to find out the unpredictable solution

set. Meanwhile an adversary cannot neither predict the results due to the randomness of the input parameters,

especially the seed, nor manipulate the results as the solution set constantly change during the process.

However the proposed protocol is still facing some limitations due to selfish miner’s strategically withholding

the solutions, or a miner can use his dominated computational power to perform an 101-Attack. Our future works are to

formulate a general framework that overcome these limitations.

2 https://etherscan.io/block/3000100
3
 We refer to https://github.com/DecentralizedRNG/resources for the complete experimental data.

https://etherscan.io/block/3000100
https://github.com/DecentralizedRNG/resources

190 FLEXIBLE PROOF-OF-WORK: A DECENTRALIZED UNPREDICTABLE NUMBER GENERATOR

ACKNOWLEDGMENTS

The work is financially supported by Infinity Blockchain Labs Co., LTD (http://www.blockchainlabs.asia).

REFERENCES

[1] Andrychowicz, M., and Dziembowski, S. “Distributed cryptography based on the proofs of work”. In Crypto,

2015, http://eprint.iacr.org/2014/796.

[2] Bagini, V., and Bucci, M. “A design of reliable true random number generator for cryptographic applications.” In

Proceedings of the workshop cryptographic hardware and embedded systems (CHES‟ 99) (1999): 204-218.

[3] Bean, J., and Langlois, P.J. “A current mode analog circuit for tent maps using piecewise linear functions.” In IEEE

ISCAS 53(2) (1994): 125-128.

[4] Bentov, I., Gabizon, A., and Zuckerman D. “Bitcoin beacon.” arXiv preprint arXiv: 1605.04559 (2016).

[5] Bonneau, J., Clark, J. and Goldfeder, S. “On Bitcoin as a public randomness source”, preprint 2015,

https://eprint.iacr.org/2015/1015.

[6] Callegari, S., Rovatti, R., and Setti, G. “Embeddable ADC-based true random number generator for cryptographic

applications exploiting nonlinear signal processing and chaos.” IEEE Transaction on Signal Processing 53(2)

(2005): 793-805.

[7] Callegari, S, Cesaroni, A, and Setti, G. “Mixed mode unpredictable binary information source exploiting complex

dynamics and adaptive median thresholding.” In Proceedings of the ninth workshop on nonlinear dynamics of

electronic systems (NDES 2001) (2001): 65-8.

[8] Delgado-Restituto, M, Medeiro, F, Rodriguez-Vazquez, A. “Nonlinear switched-current CMOS IC for random

signal generation.” Electron Lett, 29(25), (1993), 2190-1.

[9] Dichtl, M., and Janssen, N. “A high quality physical random number generator.” In Proceedings of the Sophia

Antipolis forum microelectronics (SAME 2000) (2000): 48-53.

[10] Dwork, C., Lynch, N., and Stockmeyer, L. “Consensus in the presence of partial synchrony.” Journal of the ACM

(JACM) 35(2) (1988): 288-323.

[11] Fairfield, R. C., Mortenson, R. L., and Coulthart, K. B. “An LSI random number generator (RNG).” Advances in

Cryptography: Proc. of Crypto 84, (Springer-Verlag) (1984): 203-230.

[12] Holman, W. T., Connelly, J. A., Downlatabadi, A. B. “An integrated analog/digital random noise source.” IEEE

Trans Circuits and Systems I 44(6) (1997): 521-528.

[13] Jun, B, Kocher, P. “The Intel random number generator.” Cryptography Research, Inc. white paper prepared for

Inter Corp. Apr (1999) www.cryptography.com/resources/whitepapers/IntelRNG.pdf.

[14] Lenstra, A. K. and Wesolowski, B. “Trustworthy public randomness with sloth, unicorn, and trx”, preprint

2015, http://eprint.iacr.org/2015/366.pdf; to appear in Int. J. Appl. Cryptogr.

[15] Menezes, A. J., Oorschot, P. C. and Vanstone, S. A. Handbook of applied cryptography. (1997).

[16] Marton, K., and Suciu, A. “Towards a methodology for randomness assessment: Challenges and pitfalls.”

Proceedings of The Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science

16 (2015): 385-394.

[17] Miller, A., and Bentov, I. “Zero-Collateral Lotteries in Bitcoin and Ethereum.” arXiv preprint arXiv:1612.05390

(2016).

[18] “NIST Removes Cryptography Algorithm from Random Number Generator Recommendations.” National

Institute of Standards and Technology. 21 April 2014.

[19] Ozoguz, S., Ates, O., Elwakil, A. S. “An integrated circuit chaotic oscillator and its application for high speed

random bit generation.” In Proceedings of the international symposium on circuit and systems (ISCAS 2005),

(2005), 4345-8.

[20] Petrie, C. S., Connelly, J. A. “A noise-based IC random number generator for applications in cryptography.” IEEE

T. Circuits, I47, 615-621, 2000.

[21] Petrie, C. S., Connelly, J. A. “Modeling and simulation of oscillator-based random number generators.” In

Proceedings of the IEEE international symposium on circuits and systems (ISCAS „96), (4), (1996), 324-7.

[22] Pierrot, C., and Wesolowski, B. “Malleability of the blockchain’s entropy”, preprint 2016,

https://eprint.iacr.org/2016/370.pdf.

[23] Popov, S. “On a decentralized trustless pseudo-random number generation algorithm.” Journal of Mathematical

Cryptology, 11.1 (2017): 37-43. DOI: 10.1515/jmc-2016-0019

http://www.blockchainlabs.asia/
http://eprint.iacr.org/2014/796.
https://eprint.iacr.org/2015/1015
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://eprint.iacr.org/2015/366.pdf;
https://eprint.iacr.org/2016/370.pdf

Trần Anh Dũng et. al. 191

[24] Schindler, W., Killmann, W. “Evaluation criteria for true (physical) random number generators used in

cryptographic applications.” LNCS, vol. 2523, pp. 431-449. Springer, 2002.

[25] Stojanovski, T, Kocarev, L. “Chaos-based random number generators, Part I: analysis.” IEEE Trans Circuits

Systems I, 48(3), (2001), 281-8.

[26] Syta E., Jovanovic P., Kokoris-Kogias E., Gailly N., Gasser L., Khoffi I., Fischer M.J., and Ford B. “Scalable

bias-resistant distributed randomness.” 38th IEEE Symposium on Security and Privacy, 2017.

[27] Syta, E., Tamas, I., Visher, D., Wolinsky, D. I., Gasser, L., Gailly, N., and Ford, B.

“Keeping authorities “honest or bust” with decentralized witness cosigning”, preprint 2015,

https://arxiv.org/abs/1503.08768v2.

[28] Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos. Berlin: Springer-Verlag, (1990).

[29] Yalcin, M. E., Suykens, J. A. K., and Vandewalle, J. “True random bit generation from a double scroll attractor.”

IEEE Trans Circuits Systems I: Fund Theory Appl, 51(7), (2004), 1395-404.

https://arxiv.org/abs/1503.08768v2

