Ky yéu Héi nghi Quéc gia lan thit X vé Nghién citu co ban va img dung Céng nghé thong tin (FAIR), Pa Ndng, ngay 17-18/08/2017
DOI: 10.15625/vap.2017.00038

ITERATION SCHEDULING USING BAYESIAN NETWORKS IN AGILE
SOFTWARE DEVELOPMENT

Nguyen Ngoc Tuan, Huynh Quyet Thang

School of Information and Communication Technology, Hanoi University of Science and Technology
tuanmasu@gmail.com, thanghq@soict.hust.edu.vn

ABSTRACT: In software industry nowadays, Agile Software Development methods have been largely adopted. Agile Software
Development methods themselves can be considered a certain level of reducing projects risks. However, optimization of software
project scheduling has always been big challenges in both practice and academia, since industrial software development is a highly
complex and dynamic process. There is also a need for a probabilistic method that better model and predict uncertainty in software
projects. This paper proposes an enhanced method and algorithm by combining optimized agile iteration scheduling and the ability
to predict and handle risks in resource-constrained contexts of Bayesian Networks. Based on the method, a software was developed
as a support tool for managers to control their project schedules. The tool also provides a reliable set of strategies of sequencing
tasks in agile iteration scheduling.

Keywords: Agile Software Development, Project Risks, Iteration Planning, Iteration Scheduling, Bayesian Networks.
I. INTRODUCTION

A. Overview

Traditional software development methods often characterized as predictive which focus on visioning and
planning the future in full details. A predictive development team announces exactly what features are planned for the
entire duration of the development process. Agile methods, in contrast, are adaptive. An adaptive team would have
difficulty describing what features are planned for the entire duration of the development process, but they focus on
adapting to changing realities quickly. When project changes occur then the team adapt themselves to the changes as
well [1, 2, 3].

Agile methods break deliverables into small iterations (this would reduce overall risk of realization of software
features [4, 5]). Iterations are short time frames (time boxes) that typically last from one to four weeks. Each iteration is
a full software development cycle which includes planning, requirements analysis, design, coding, unit testing, and
acceptance testing when a working software is demonstrated to users and/or customers. This minimizes overall risks
and allows quick adaption to changes [6, 7, 8, 9].

Adopting Agile practices and processes brings certain benefits to organizations such as quicker return on
investment, higher product quality, and better customer satisfaction [10]. However, they lack a sound methodological
support of planning (contrary to the traditional plan-based approaches). VersionOne’s survey [11] identified 26
principal factors and the second one was iteration planning. The survey also showed that three out of the five most
important concerns (in the total of 13 most commonly cited greatest ones) about adopting agile within companies are 1)
the loss of management control (36%), 2) the lack of upfront planning (33%) and 3) the lack of predictability (27%).

In addition, there have been some tools and techniques for project scheduling that project managers used (Fox
& Spence [12], Pollack-Johnson [13]). Akos Szoke [14] presented a new approach for iteration scheduling in agile
software projects. Vahid Khorakadami et al. [15] presented an improved approach to incorporate uncertainty using
Bayesian Networks (BNs) in general project scheduling.

B. Optimized agile iteration scheduling

Scheduling problems constitute an important part of the combinatorial optimization problems. Scheduling
concerns about the allocation of limited resources to tasks over time. The goal is the optimization of one or more
objectives in a decision-making process [14]. Software project scheduling has to deal with the fact that resources such
as human, time, technology and money are not always predetermined. Moreover, there are always risks (uncertain
events which cause badly impacts) in software projects.

Technical tasks are the main concepts of iteration scheduling. These tasks are fundamental working units
accomplished by developers. The aim of iteration scheduling is to break down selected requirements into technical
tasks and to assign them to developers (and usually require some working hour realization effort that is estimated by
the team). In other words, iteration scheduling aims at determining a feasible fine-grained plan for the development that
schedules the implementation of selected features within an iteration [5].

Optimized (agile) iteration scheduling problem can be derived by selecting the extreme-valued schedule from
the potentially feasible alternatives. This can be considered as an optimization problem in which the resource allocation

Nguyen Ngoc Tuan, Huynh Quyet Thang 301

consists in assigning time intervals to the execution of the activities (realization tasks) while taking into consideration
both temporal constraints (precedence between tasks) and resource constraints (resource availability) and the minimum
execution time objective.

Although agile software development represents a major approach to software engineering, there is no well-
established conceptual definition and sound methodological support of agile iteration scheduling.

II. OPTIMIZATION MODEL FOR AGILE SOFTWARE ITERATION

Let R be the set of resources and the following typical properties for scheduling be interpreted on technical tasks
to schedule them:

Effort: w; - time estimation (in hours) is associated with each task. It is calculated by simple expert estimation
(e.g. 2, 4, or 8 working hour (Wh)).

Pre-assignment: a; - in some cases resource pre-assignment is applied before scheduling. It is used by the
scheduler algorithm during resource allocation.

Let the vector S = {Sy, Sy, ..., Sy41} be start times for tasks’ realizations - where S; > 0:j € Aand S, = 0. The
vector S is called a schedule of development. In this definition, the 0 and n + 1 are auxiliary elements to represent
iteration beginning and termination, respectively.

Dependencies between tasks j and j’ can be defined as:
Si—=Sp+d, =Py :j,j€A 1)

with S; is the start time for the realization of task j, S, is the start time for task j', d;, is duration time of task j', P;s ;
presented precedence tasks, and A is the set of tasks need to be done in the iteration.

Let the R; € N is a set of capacities of resources that have been assigned to the project in an Agile iteration. The
effort estimation yields resource requirements r_(j,i)-€Z for each task j and each resource i. Let S be some schedule and
let t be some point in time. Then let A*(S,t) = {j € A|S; < t < S; + w; } be the active set of tasks being in progress at
position t. The corresponding requirement for resource i € R at time t is given by 7,(S,t) = Yjcar(se) 7, AS @
consequence, the resource constraints can be treated as follows:

rl(S,t) SRl : [€R (2)
Thus, optimization problem for iteration scheduling can be formulated as follows:

Minimize zZ=S811

Subject to

Sj— Sy + djp = Pjr; : j,j €A

ri(S,t)SRl- : i€R

Sn+1 =< ll

with I! is the length of the iteration. 3)

II1. SOLVING THE OPTIMIZATION PROBLEM FOR ITERATION SCHEDULING

The vector r indicates the available resources (developers) in the iteration. Each wj; is the planned effort
(duration) for technical task j—-both development and defect correction. Every element of vector a; contains a reference
to a resource index (a; € {1..|r[}) which indicates resources pre-assignment to task j. The a; = 0 means that task j is
not pre-assigned.

Thus the algorithm will find the best resource to its realization. Precedence between tasks can be represented by
a precedence matrix where P; ;, = 1 means that task j precedes task j', otherwise P; ;, = 0. Both conditions P; ; = 0 (no
loop) and P is directed acyclic graph (DAG) ensures that temporal constraints are not trivially unsatistifiable. Iteration
time-box is asserted by variable I'. It is used as an upper bound in resource allocation to prevent resources
overloading. The result of the algorithm is a schedule matrix S where rows represent resources, and columns give an
order of task execution. Thus S;,, = j means that task j is assigned to resource i at the position p. The ensure section
prescribes the postcondition on the return value (S): every task j has to be assigned to exactly one resource i.

The algorithm for iteration scheduling can be formulated as the following:
Algorithm 1; [14]
Input:

€N, Il €N /* resources and length of each iteration*/

302 AGILE ITERATION SCHEDULING USING BAYESIAN NETWORKS

a; €N: a; €{1.|r|},w; €R [/* Pre-assignment and duration of each task*/
Pj, €01 AP;; =0 APisDAG I* precedence™/
Ensure:
S €01AVjaLS;; =1
m & length(r) ,n & length(d) /* number of resources and tasks */
S < [0]nn /* Initiate set of resources */
rlist & @ ,slist = @ /* Initiate ‘ready list’, ‘scheduled list” */
forj=0ton do
pot & findNotPrecedentedTasks(P) [* Find potential task */
rlist < pot \slist [* Construct ready list */
if rlist =@ then
return ¢ /* No schedulable task */
endif
je max{aj} : j € rlist /* Select a task */
if a; = 0 then
i & selectMinLoadedResource(S) /* without assignment */
else
i < ay /* with assignment */
endif
l < sum(Siq1.n) [*Examine load of resource i */
if (1 +w;) > U/ then /* overloaded iteration */
return ¢
endif
p & findNextPos(S, i) /* The next task */
Sip<=J /* Assigned task j with resource i at position p */
slist < slistU{j} /* Add task j into slist */
Pinyj =0 /* delete precedence related to scheduled task */
endfor
return S

IV. INCOOPERATING THE OPTIMIZATION PROBLEM WITH BAYESIAN NETWORKS

A. The need for a probabilistic model

The input of the above algorithm is defined which are resources, planned duration for each task, task precedence
and the length of each iteration. It is assumed that given the resources, the task will be done in the planned duration.
However, there are always risks in real projects such as those about personnel or technology. Those uncertainties can
hardly be predicted, lead to the need of a probability model which can quantify the uncertain issues as well as
addressing the most important concerns (cited in A. Overview). BNs is believed to be the good approach for modeling
uncertainty in projects as well as helping project managers making decisions [15].

B. Bayesian Networks

Bayesian network (BN, or also be called as Bayesian Belief Network) models the causal relationships of a
system or dataset and provides a graphical representation of this causal structure through the use of directed acyclic
graphs (DAGs) with nodes and edges. The DAG representation provides a framework for inference and prediction. The
nodes represent random variables with probability distributions, while edges represent weighted causal relationships
between the nodes. Each node has a probability of having a certain value. A directed edge exists from a parent to a
child. Each child node has a conditional probability table based on its parental values. Bayesian Network is based on
Bayes’ Theorem, and it is expressed in the basic form of Bayes rule as:

Nguyen Ngoc Tuan, Huynh Quyet Thang 303

P(S|R)P(R) (4)
P(S)
The above Bayes rule is interpreted in terms of updating the belief (posterior probability of each possible state of
a variable, that is, the state probabilities after considering all the available evidence) about a hypothesis R in the light of
new evidence S. So the posterior belief P(R/S) is calculated by multiplying the prior belief P(R) by the likelihood
P(S/R) that S will occur if R is true.

A BN consists of two parts: 1) qualitative part represents the relationships among variables by a directed acyclic
graph, and 2) quantitative part specifies the probability distributions associated with every node of the model. The
Figure 1 show a BN represents a simple case about the relationship between resources and duration in an iteration.

P(R|S)=

Initial Duration
Estimation

Figure 1. An example of Bayesian Network which represents a simple case.

C. Using BNs to enhance Agile iteration scheduling
The authors propose the following factors added to the above-mentioned algorithm:
a) A matrix which represents the relationship between each task duration and assigned resources:
[Blspy = by €[0,1] [i=0..n+1,j = 1.} (5)
i.e. the probability for task i to be done in the time w; and allocated resource j is b;;

b) When a schedule is created, its probability of completion is examined. An array should be imposed to
represent the weights of tasks in an Agile iteration.

M] ., ={mli=0..n+1} (6)
Each task has an impact on the schedule for the iteration. Therefore we can have an array T of those impacts:
[T],,,={tli=0..n+1} 7)

In this research, we propose the following formula for ¢;:
Let the set Di of resources allocated for task i in the iteration

t; = min{b;|j € D;} 8)
The probability for the schedule is done successfully:

_ I tiemy
P = ‘L(l=+01mi (9)

¢) The algorithm with Bayesian Networks
The algorithm for calculating T:

Input: S, B
fori=0to n+1do

t;, =1 /*Initiate the default t */

for j = 0to|r| do

if 3p € P'S;,! =0 Ab;; <t;then /* Check if allocated */
t;=by; /* Update */
endif

endfor

endfor

returnT

304

AGILE ITERATION SCHEDULING USING BAYESIAN NETWORKS

Thus, an enhanced algorithm using BNs — Algorithm 2 is formulated as follows:

Algorithm 2:
Input:
€N, €N
a; €N:a €{l.|r|},w; €R
Pj, €01 AP ;=0 APisDAG
[Blyszyr = {b;j €[01],i=0..n+1,j =1..|r[}
[M]pye = {mili =0..n+ 1}
[Tlasz ={tili = 0..n+ 1}
Ensure:
S €0,1AVjalS; ;=1
m & length(r) ,n & length(d)
S < [0]n
rlist =@ ,slist =« @,P' <@
for j=0to n do
pot & findNotPrecedentedTasks(P)
rlist & pot \slist

if rlist = ¢ then

return ¢

endif

j&e max{aj} 1 j € rlist
if a; = 0then

i & selectMinLoadedResourceandMaxPro(S)

else
i< q;
endif
l &< sum(Si,{Ln})
if (I +w;) > U/ then
return ¢
endif
p & findNextPos(S, i)
P’ < P'U{p}
Sip<EJ
slist & slistU{j}
Py =0
endfor
T & computingfrom(S, B)
x = computingProFrom(S,T, M)
return S,x, P’

Where:

/* Resources and length of each iteration*/
/* Pre-assignments and durations of tasks*/
/* precedences */
/* Matrix of completion probability */
/* Weights of tasks in iteration */
/*Impacts of tasks in iteration */

/* Number of resources and tasks */
/* Initial set of resources */
/* Initiate ‘ready list’, ‘scheduled list” and P' list */

/* Find potential task */
/* create ready list */

/* No schedulable task */

/* select a task */

/* without assignment */

/* with assignment */

/* calculate load of resource i */
/* overloaded iteration */

/* the next task */

/* add the index of the next task into P’ */

/* assigned task j with resource i at position p */
/* add task j into slist */

/* delete precedence related to scheduled task */

/*calculating matrix T from B */
/* Calculating x from S, T, M */

e findNotPrecedentedTasks - Find tasks without priority constraints based on matrix of task priority P
o selectMinLoadedResource(S)- Select the resource with the minimum load and the highest probability of

success (with the criteria of maximum load and probability).

Output: The set S of schedules set of time for tasks, and the probability of successful S.

Nguyen Ngoc Tuan, Huynh Quyet Thang 305

V. TOOL AND EXPERIMENTAL RESULTS

A. Building tool

To elaborate the proposed model and algorithm, we built the tool BAIS (Bayesian Agile Iteration Scheduling)
using Java programming language. The tool allows users to enter the number of resources (developers), the number of
tasks, the length of iterations, tasks’ precedences, pre-assignments and durations for tasks. The tool also requires the
input for a table of probability for each resource finishes the assigned task in time (Figure 2).

BAIS implements four strategies for selecting tasks in scheduling (or scheduling rules):
e SPT (Shortest processing time first): sequences the tasks in increasing order of their processing time.
e LPT (Longest processing time first): sequences the tasks in decreasing order of their processing time.
e AF (Assigned First): sequences the tasks based on team pre-assignments.

e AF+LPT: the combination of AF and LPT.

=8 Lromg b phdindn S =8 Areng b va ‘s

OF a sevre s

Bp ring DI v M0 g8 caC rtvdm W s

ThOY gan wie trh S tede revdm v i

T phla 55 rhaler wy M nih oA e lr.ni

Dang a7 suld haas arh Ang nan Tong tusmg PR 2Em W FUDc Azan hs g e g
Dy aic sult aas Barh Ang han bong Weeg han etebs w tuec ol hae g

ThUS M40 vt (den v Enasssl Potaaang lise .

Xac sult hode thanh kch trinh: 0% Lipkh

Figure 2. Home GUI of tool BAIS

B. Experimental results and analysis
The authors use two data samples in two experiments:

a) The first sample is a randomly generated one. Given an iteration with two resources and 20 working-hour
length (unbound). Its number of tasks is 8 and there is only one precedence that is the 5™ task need to be done before
the 3 one. Table 1 shows Ty, T, are probability tables of resource 1 and resource 2 successfully done their tasks (i.e.,
finish in time as scheduled) if the previous tasks were done in time, and D,, D, are their probability tables of finishing
their tasks in time if the previous tasks were over schedule.

Table 1. The first data sample

Task Time | Pre-assignment T, T, D, D,
1 4 - 0.92 0.83 | 0.38 | 0.34
2 3 - 0.74 0.72 | 0.27 | 0.22
3 5 - 0.93 0.85 | 0.22 | 0.34
4 4 2 0.94 0.84 | 0.43 | 0.36
5 2 - 0.83 073 | 0.26 | 042
6 5 - 0.82 096 | 0.17 | 0.23
7 4 - 0.73 094 | 032 | 052
8 3 - 0.68 0.73 | 0.27 | 0.13

The results of four strategies of selecting tasks SPT, LPT, AF, and AF+LPT:

e SPT: the shortest time that all resources finish in an iteration — makespan - is16 (hours). Resource 1 is
assigned the tasks 5, 2, 7, 3 and Resource 2 is assigned the tasks 8, 1, 4, 6 respectively. The probability for success is
68,83%.

e LPT: makespan is 17. Resource 1 is assigned the tasks 6, 7, 8, 3 and Resource 2 is assigned the tasks 1, 4, 2, 5
respectively. The probability for success is 60,42%.

306 AGILE ITERATION SCHEDULING USING BAYESIAN NETWORKS

e AF: makespan is 15. Resource 1 is assigned the tasks 1, 2, 6, 8 and Resource 2 is assigned the tasks 4, 5, 3, 7
respectively. The probability for success is 66,77%.

e AF+LPT: makespan is 17. Resource 1 is assigned the tasks 6, 7, 8, 3 and Resource 2 is assigned the tasks 4, 1,
2, 5 respectively. The probability for success is 60,37%.

According to the above result, if the team considers minimizing makespan is the first optimized criteria, then the
AF strategy should be chosen. If we want the highest probability of success, then we take the SPT strategy. Figure 3

reids

Shortest Processing Time First

Time

;" L . |

AL LE LS AL

Figure 3. Gantt chart for SPT strategy

b) The second experiment was carried out with a real-life project data from the Company A. There are 3
developers who need to finish 15 tasks in the project. Each iteration is carried out in 40 hours. The authors asked the
project manager and experts in the company to provide the pre-estimated probability of finishing the tasks based on
each developer’s experience. The calculation from the tool BAIS gives us the probability table shown in Table 2.

Table 2. The probability table for tasks and resources

Probability
Taks | Time | preyious tasks in time | Previous tasks over schedule
Re.1 |Re.2 |Re.3 |Re.l Re. 2 Re. 3
1 6 1.00 0.96 0.65 0.88 0.8 0.49
2 9 1.00 1.00 0.9 0.96 0.85 0.68
3 5 1.00 1.00 0.87 0.7 0.81 0.65
4 6 1.00 1.00 0.83 0.88 0.74 0.75
5 9 1.00 1.00 0.89 0.9 0.77 0.66
6 6 1.00 1.00 0.96 0.98 0.9 0.82
7 2 1.00 1.00 0.8 0.85 0.75 0.75
8 6 1.00 1.00 0.77 0.95 0.75 0.68
9 6 1.00 1.00 0.75 0.96 0.9 0.75
10 4 1.00 1.00 0.89 0.85 0.72 0.67
11 8 1.00 1.00 0.89 0.8 0.9 0.67
12 7 1.00 0.94 0.75 0.9 0.74 0.68
13 4 1.00 1.00 0.82 0.84 0.75 0.62
14 3 1.00 0.86 0.75 1.00 0.84 0.67
15 4 1.00 1.00 0.76 0.83 0.9 0.67

The results for makespans and overall probability: SPT: makespan is 30, the probability for success is 97,98%;
LPT and AF+LPT: makespan is 28, the probability for success is 46.98 %; AF: makespan is also 28, and the
probability for success is 88,89%. According to these results, the project manager should really pay more attention on
the tasks assignments and adjust the iterations’ times during the project.

The results of both experiments show that the tool can support decisions in agile software development planning
to tailor the best plan for the specific project context and users’ and/or customers’ feedbacks by altering constraints,

Nguyen Ngoc Tuan, Huynh Quyet Thang 307

capacities and priorities. In a single project, the manager can also use the tool to predict next phases or next iterations
schedule and better understand how the failure of the phase can impact the whole project.

VI. CONCLUSION

The research has developed an algorithm for agile iteration scheduling with the cooperation of Bayes Networks
to support software teams to analyze the schedules as well as predict the chance of their success. The method improves
the quality of agile software development planning to provide lower level risks by considering all major planning
factors (e.g. dependencies, capacities) in a mathematical optimization model.

The results of experiments on the available data sets and indicate that the approach can provide practical value
as a decision support tool for agile iteration planning. To further affirm this, more representative real-life data sets
needed and some case studies can be carried out.

This research can be considered as a step towards a conceptual model of agile iteration planning and scheduling.
Since the research gives better insight into resource-constrained project scheduling problems, this may suggest a new
optimization problem on agile iteration scheduling.

The developed tool provides options for scheduling rules which enable us to compute an optimal active schedule
for the singular resource or overall project. An upgrade can be further developed which incorporates BNs for
representing and analyzing causal models involving uncertainty. The version can even provide a set of tools for
constructing probabilistic inference and decision support systems on BNs and thus can assist software project managers
in making decisions in scheduling and planning all kinds of software projects.

Acknowledgment: The authors express gratitude thanks to Ms. Bui Thi Quynh Nga (5™ year student at School of
ICT, HUST) for her valuable help in the development of the tool BAIS.

REFERENCES
[1] Tore Dyba and Torgeir Dingseyr, “Empirical studies of agile software development: A systematic review”,
Information and Software Technology 50.9-10, pp. 833-859, ISSN: 0950-5849, 2008.

[21 P. Abrahamsson et al., Agile software development methods - Review and analysis, Technical report 478, VTT
PUBLICATIONS, 2002.

[3]1 Sanjiv Augustine, “Managing Agile Projects”, Upper Saddle River, NJ, USA: Prentice Hall PTR, ISBN:
0131240714, 2005.

[4] Tsun Chow and Dac-Buu Cao, “A survey study of critical success factors in agile software projects”, Journal of
System and Software 81.6, pp. 961-971. ISSN: 0164-1212, 2008.

[5] Mike Cohn, Agile Estimating and Planning, NJ, USA: Prentice Hall PTR, ISBN: 0131479415, 2005.
[6] Ken Schwaber and Mike Beedle, Agile Software Development with Scrum, 2001.

[71 Robert C. Martin, Agile Software Development, Principles, Patterns and Practices, 2002.

[8] Ade Miller, Distributed Agile Development at Microsoft patterns and practices, 2008.

[9] Agile Alliance, Manifesto for agile software development, [Online] Retrieved 14 May 2017. Available at:
http://agilemanifesto.org

[10] Nguyen Ngoc Tuan and Huynh Quyet Thang, “Combining Maturity and Agility — Lessons Learnt From A Case
Study”, Proceedings of the 4th International Symposium on ICT SoICT 2013: 267-274, 2013.

[11] VersionOne, 7th Annual Survey: 2012, The State of Agile Development, Full Data Report, 2013.

[12] Fox T. L. and Spence J. W., “Tools of the trade: a survey of project management tools”, Project Management
Journal, 29, 20-28, 1998.

[13] Pollack-Johnson, “Project management software usage patterns and suggested research directions for future
development”, Project Management Journal, 29, 19-29, 1998.

[14] Akos Szoke, Models and Algorithms for Integrated Agile Software Planning and Scheduling, PhD Dissertation,
2014.

[15] Vahid Khorakadami, Norman Fenton and Martin Neil, Improved Approach to Incorporate Uncertainty Using
Bayesian Networks, Queen Mary University of London, United Kingdom, 2009.

http://agilemanifesto.org/

308 AGILE ITERATION SCHEDULING USING BAYESIAN NETWORKS

LAP LICH BUOC LAP SU’ DUNG MANG BAYES TRONG DY AN PHAT TRIEN
PHAN MEM LINH HOAT

Nguyén Ngoc Tuin, Huynh Quyét Thing

TOM TAT: Cic phwong phdp phdt trién phan mém linh hoat (Agile Software Development) da duoc sir dung rong rai trong gan 20
nam qua. Cdc phuong phdp nay vé mat triét Iy da huong vao viéc giam thiéu cac rui ro trong dir &n phdn mém. Tuy nhién trong thuc
té cong nghlep phdn mém day phirc tap va bién dgng thi tdi wu héa Idp lich dur &n ludn 1& mét thach thirc Io’n Ngodi ra cung c6 nhu
cau lon vé phu'ongphap dinh hrong dé mo hinh hoa, phan tich va di dodn rii ro trong cac dir &n phan mém. Bai bao nay cdi tién
cdc phwong phdp va giai thugt hi¢n ¢ trong viéc tich hop ldp lich budc lap t0i weu voi kha nang dir dodn rii ro cia Mang Bayes
trong méi trwong nhieu rang bugc nguon liec. NNOm tac gid phdt trién duoc thudt todn ldp lich buéce lap sit dung mang Bayes dé ho
tro dua ra lich trinh va danh gia xdc sudt hoan thanh lich trinh, dong thoi dua ra chién luoc lwa chon nhiém vu trong ldp lich budc
lap méi dé lam giam tong thoi gian thie hién budc ldp (makespan) trong rang budc vé yéu cdu phdn b6 nguon lic truée do.

