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ABSTRACT: Allocating indivisible items between agents in a fair manner is a fundamental problem that has attracted a lot of
interests in the last decades due to the wide range of its applications. There are several common criteria for defining what a fair
allocation is, including: max-min share, proportional share, min-max share, envy-freeness, CEEI. In this paper, we introduce a new
notion of fairness, called Nash-product share, which can be determined through computing an allocation of maximum Nash-product
welfare, assuming that all agents have the same additive utilities. An allocation satisfies this fairness criterion is called a Nash-
product fair allocation. We first show that computing the Nash-product share of every agent is NP-hard, even with two agents only.
In addition, we prove that the problem of testing the existence of a Nash-product fair allocation is an NP-hard problem when the
number of agents is part of the input. Finally, since a Nash-product fair allocation does not always exist, we investigate the problem
that, given a problem instance, asks for the largest value ¢ for which there is an allocation such that every agent receives a subset
of items of values of at least ¢ times her Nash-product share. For the case where the number of agents is constant, we present a

polynomial-time approximation scheme (PTAS).

Keywords: Fair allocation, max-min share, proportional share, Nash-product share, approximation algorithm, complexity.

I. GIOI THIEU

Fair allocation is a fundamental problem which is of interest in both computer science and economics due to the
wide range of its applications (see a book chapter by Bouveret [8] and Lang and Rothe [15]). This problem concerns
with allocating a finite set of goods (that may also be called items or objects) among a group of agents having different
preferences over the subsets of goods. We will assume that the preferences of agents are presented by additive (or
linear) utility functions. Our goal is to find an allocation that satisfies a certain notion of fairness. Among others, max-
min share, proportional share, and envy-freeness are the three notions that have been studied intensively in the
literature. The max-min share of an agent is defined as the bundle that the agent can guarantee for herself when
partitioning the items into bundles but choosing last. In a proportionally fair allocation between n agents, each agent
receives a bundle of value at least 1/n of the whole. An allocation is said to be envy-free if no agent wants to
exchange her bundle of goods with that of any other agent. These three fairness criteria have attractive theoretical and
practical properties (see the references cited above and the references therein). In [7], it was shown that envy-freeness
is the strongest among the above fairness notions and implies proportional fairness, which implies max-min fairness-
the weakest one. On the other hand, as argued in the literature (see, for example, [14, 16, 17]), an allocation satisfying
any of the these fairness notions is not guaranteed to exist in general. Furthermore, checking the existence of an envy-
free (proportional fair) allocation is NP-complete (see [7]) even in the simplest setting with two agents having the same
additive utility functions. However, it is still not known yet if the same result applied to the case of max-min fair
allocation. We would like to emphasize that the idea of applying fairness criteria, which is consider in this paper, is
orthogonal to the approach of maximizing egalitarian welfare (i.e., the utility of the worst-off agent), and Nash-product
welfare (i.e., the product of individual agents’ utilities) which has been intensively studied in the literature.

In this paper we introduce a new notion of fairness called Nash-product share, and study fair allocation
problems with respect to this notion. Roughly speaking, a Nash-product share of an agent is the bundle of goods that
she receives in an allocation of maximum Nash-product (the Nash-product of an allocation is computed as the n-th
root of the product of individual agent utilities), assuming that all agents have the same utility functions. The
motivation of the study of the Nash-product share is two folds. Firstly, the fair share typically depends on how to
allocate fairly items among identical agents. Budish [9] takes this idea into account and introduce the notion of the
max-min share, which relies on the determining of an allocation of maximum egalitarian welfare. Since maximizing
the Nash-product welfare is also considered to be a fair way for allocating item (see, e.g., [3, 4, 5, 6, 18, 19]), it is very
natural to define the notion of Nash-product share. Secondly, although checking the existence of proportionally fair
allocation is NP-complete, we do not know yet if checking the existence of max-min fair allocation is also NP-
complete. While this question remains open, it is of great interest to examine if there is a fairness notion that lies
between the proportional share and the max-min share in the scale of Bouveret and Lemaitre [7] such that checking the
existence of an allocation satisfying this fairness criterion is NP-complete.

Our contribution: We first show that the Nash-product share is stronger than the max-min share but weaker than
the proportional share. Furthermore, we prove that computing the Nash-product share is NP-hard even when there are
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only two agents with additive utility functions, and give a NP-hardness result for the problem of checking the existence
of Nash-product fair allocations. Finally, we consider the problem which determines, given a problem instance, the
largest value ¢ for which there exists an allocation in which every agent gets a bundle of goods of utility of at least c
times her Nash-product share.

A. Related work

The max-min share was considered for the first time by Budish [9] as a fair criterion for the allocation of
courses to students at the Harvard university. Since then, there has been a sequence of papers investigating this
criterion 1, 2, 7, 20, 14, 17]. Bouveret and Lemaitre [7] prove that computing max-min shares is NP-hard but leave
open the question of whether or not the problem of determining the existence of max-min fair allocations is NP-hard as
well. For two agents, it is well-known that there is always a max-min fair allocation which can be found via a simple
cut-and-choose protocol. However, this is not the case for any problem instance with more than two agents [17].
Hence, many attempts have focused on finding a small constant value ¢ for which there always exists an allocation
such that every agent gets a bundle of utility of at least a fraction ¢ of her max-min share. Procaccia and Wang [17]
show that ¢ =2/3and give an (exponential) algorithm for computing an allocation corresponding to this value c. By
redesigning parts of the algorithm of Procaccia and Wang [17], Amanatidis et al. [1] show that a 2/3-max-min fair
allocation can be found in polynomial time. For a small number of agents, the problem is understood better. For three
agents, it is shown by Amanatidis et al. [1] that ¢ =7/8. It still remains open whether the lower bound of 7/8 can be
further improved for a higher constant number of agents. Very recently, Aziz et al. [2] have given a polynomial-time
approximation scheme for computing an optimal max-min fair allocation, assuming that the number of agents is fixed.

For proportionally fair allocations, the problem of checking the existence of such allocations is NP-complete,
even with two identical agents (Bouveret and Lemaitre [7]). A first lower bound for c, which is essentially a function
depending both on the number of agents and on the maximum value of any agent for a single good, is provided by Hill
[13]. Markakis and Psomas [16] present a polynomial-time algorithm for constructing an allocation with respect to this
lower bound. An improvement of this bound is then proposed by Gourves et al. [11, 12].

Since we will study the Nash-product share criterion in this paper, we would like to give a brief overview of
results on the problem of computing maximum Nash-product allocations. This problem is shown to be NP-hard by
Nguyen et al. [19]. In addition, it has been recently proved that there is a constant factor « for which one cannot have
an approximation algorithm of a factor better than « [21]. A first approximation algorithm for the problem with an
approximation factor of O(m) is given in [18], where m denotes the number of goods. This result was improved by
Cole and Gkatzelis in [6] where the authors obtained an approximation algorithm with a constant factor ~2.89. Very
recently, Cole et al. [4] have achieved a further improved factor of 2 for the problem. For the special case when all
agents have the same utility functions, there is a polynomial time approximation scheme (PTAS) for the problem [18].

II. PROBLEM MODELS

In a fair allocation we are given a finite set A= 1,..,n of agents and a finite set O = 0,,...,0,, of indivisible
and nonshareable goods (or items or objects). Each agent i has an individual preference over the subsets of goods,
which can be accessed through a utility function: u, : 2° — Q" —a mapping from the set of all subsets of O to the set
of nonnegative rational numbers. We assume that every utility function u. is additive (or linear), that is, for any subset
Sc O,y (S)zzoes u; (0) . Additive functions are perhaps the most simple and compact representation of utility
functions and have been widely used in many fair allocation problems. The nonnegative value u.(0) is called the
utility (or the value) of item o for agent i.Let U = u,...,u, , we call (A,O,U) an allocation setting. An allocation
of goods between agents is defined as a partition 7 = (7,...,7,) of O into n disjoint subsets, where 7, is the subsets
of items that is assigned to agenti . We can also call 7, agent i 's share. For any allocation  , it must hold that:

e mnx;=J,fori#j,(ie, noitem is given to multiple agents),

. Uin:lzri =0, (i.e., every item is given to some agent).

We denote by [ the set of all such allocations = .

Given an allocation setting (A,O,U), we want to find an allocation 7 = (7,...,z,) that is fair. There are several

common criteria for fairness which have been studied intensively in the literature, including: max-min share,
proportional share, min-max share, envy-free, and CEEI. For a detailed description of these fairness criteria, we refer to
a recent paper by Bouveret and Lemaitre [7]. In this paper we introduce a new criterion, called Nash-product share,
which are formally defined below. We also define the max-min share and proportional share since we will make a
comparison between these notions of fairness in the next section.

Definition. Given an allocation setting (A,O,U), define
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e agenti's max-min share as
MMS, = max,_, min}_, u,(z;)
e agenti's proportional share as

m

Su0)
PS, :wzjﬂ—
n n

e agenti's Nash-product share as

NPS; =max__; [ﬁ u; (;rj)j

1
n

An allocation 7 =(7,,...,7,) is

e amax-min fair allocation if u,(7;) > MMS; forall ie A
e aproportional fair allocation if u,(z,) > PS; forall ie A
e aNash-product fair allocation if u,(z;) > NPS; forall i€ A

Let us consider the relationship our notions have to one another. Proportional fairness is the strongest among the
above fairness notions and implies Nash product fairness, which implies max-min fairness.

Proposition 1. Let (A,O,U) be an allocation setting and i< A. We have PS, >NPS >MMS,, and,
furthermore, all these fairness notions are distinct.
Proof. The chain of inequalities follows from the inequalities between arithmetic and geometric. To see that the

max-min fairness does not imply the Nash-product fairness, consider two agents with identical utility functions over
four items. The items are valued 1, 2, 3, and 5, respectively. The max-min share of both agents is 5 (with allocations

{(1,5), (2,3)} and {(5), (1, 2,3)} , whereas NPS, = /30 > 5. But then no Nash-product fair allocation exists. That the
other fairness notions are also distinct is again easy to show using the definitions of arithmetic and geometric.

In this paper we study the following problems.

NPS-Comp
Given: An allocation setting (A,O,U), an agent i, and a number ¢>0.

Question: Do we have NPS, >(?

NPS-Exist
Given: An allocation setting (A,0O,U).
Question: Is there a Nash-product fair allocation?

I1I. HARDNESS RESULT AND APPROXIMATION ALGORITHM

A. Hardness result

Theorem 1. NPS-Comp is NP-complete.

Proof. One can easily see that NPS-Comp belongs to NP. We are now showing the NP-hardness via a reduction
from the PARTITION problem: Given a set of positive numbers C = a,,...,a, such that zrjn:laj =2K for some
positive number K, the question is that whether there is a partition (C,,C,) of C such that Zjeq a; = Z a; =K?

Let C be an instance of PARTITION, we construct an instance |1 of NPS-Comp as follows. There are two agents
and m items o,,..,0, , both agents have the same additive utility functions defined by u,(0;) =u,(0;) =a; for all
j=1...,m. Now we consider agent 1 and let /=K . The Nash-product share of agent 1 can be computed as

NPSl :(rgl]%i()\/ Zajeqaj ’ Z:aJeC2 aj !

jeC,
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which is taken over all possible partition (C,,C,) of C. One can see easily that NPS =K if and only if

zqu a = ngcz a; =K. In other words, | is a yes-instance of NPS-Comp if and only if C is a yes-instance of

PARTITION, and this implies the NP-hardness of the first problem. |
Theorem 2. NPS-Exist is NP-hard.

Proof. To prove NP-hardness part, we rely on a reduction from the NP-complete problem 3-Dimensional
Matching (3DM), which is defined as follows:

3-Dimensional Matching

Given: Three disjoint sets X = X,..,X, ,Y = Yy,.., Y, ,Z = Z,..,Z, and a collection F of 3-element

subsets of X xY xZ (assuming, without loss of generality, that p > q).

Question: Does F contain a matching, i.e., a subcollection F'c F such that every element of X xY xZ is
covered by exactly one member of F'?

Here we assume that q is even and that p=3q/2. Note that 3DM is still a NP-complete problem even when
restricted to this setting. Let (X,Y,Z,F) be an instance of 3DM. We will construct a corresponding instance | of
NPS-Exist with p agents and p+2q items. Agent i corresponds to the element F € F, for i €[p], where [p] is a
shorthand for 1,...,p . Thereare 3q items corresponding to 3q elements of X xY xZ . Additionally, we create q/2

dummy items D= d, ..., d,, .

We now define the utility function of agent i, for i €[p]. For a bundle F, =(x,y,z) e F, the utilities of items
X,¥,and z are, respectively, 49,29 and q. For the remaining 3q—3 items, we fix their ordering in an arbitrary way,
and then assign a utility of 1 to each of the first g—3 items, and a utility of zero to each of the rest. All the dummy
items have the same utility B, where B is a positive integer such that B >8q—3. The exact value of B will be
determined later. One can see that our reduction constructed above can be computed in polynomial time.

Let us compute the Nash product share for every agent i €[p]. This amounts to finding a partition of the set of
the items into p disjoint subsets such that the product of the values of the subsets is maximized. Let 7 = (7,,...,7,) be
such an optimal partition. We first notice that if there is some agent j who received a dummy item d by the allocation
7, then d is the only item assigned to her. Indeed, since there are only q/2 dummy items, there are at most q/2
agents having dummy items in 7. We call those agents “big” agents, and the other ones “small” agents. If a big agent
received a dummy item d and another item t, then by transferring t to any small agent, the Nash product (i.e., the

product of agents’ utilities) will be improved. The same argument can be applied to show that if an agent received an
item from the first q / 2 + 3 largest items in the list, then that is the only one she had in z . Hence, there are q—3

worst-off agents in 7, each receiving an item of value 1. The Nash-product share of every agent is
NPS= BY?.4q.2qq ' = 8q ** B,
since p=3q/2.

We claim that (X,Y,Z,F) is a yes-instance of 3DM if and only if there is a Nash-product fair allocation for the
constructed instance 1| .

(=) Suppose that (X,Y,Z,F) is a yes-instance of 3DM and let F'c F be a subset that forms an exact cover
of X xY xZ. Let us consider an allocation z' of | in which agent i is assigned the bundle F, if F € F', and one

dummy item from D, otherwise. It is clear that all the items are allocated and there is no item shared by two or more
agents. Therefore, each agent received a bundle whose value is at least 4q+2q+q=7q.

(&) Suppose that (X,Y,Z,F) is a no-instance of 3DM. Consider an optimal allocation = of | . As argued
above, there is a subset T of g agents who do not receive any dummy item from D . Let i be a worst-off agentin T .
Note that agent i cannot get the bundle F, since otherwise, any other agent jeT also receives her preferred bundle
F,, and this implies that C;|jeT forms an exact cover of X xY xZ. The best assignment agent i can get is a
bundle containing two most preferred items from F. and one item of value 1. Hence, the utility of her bundle is at most
49+29+1=6q9+1.
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Now, by choosing an positive integer B such that
6q-+1< (8q9)¥*.B¥* < 7q,
or, equivalently,
60+1"° 7q°
6/ < B < 6/q !
(8a)™" (8a)™"

it follows that 1 has a Nash-product fair allocation if and only if (X,Y,Z,F) is a yes-instance of 3DM. It remains to
show that the number B chosen above satisfies B >8q—3. It suffices to prove that

6q+13

8q-3< —(8q)6/q

or, equivalently,

(80—3).(80)* < (6q+1)°.

It is not hard to see that the function f(q)=(6q+1)°—(8q—3).(89)°“ is increasing on the interval [3,+x).
Hence, it follows that f (q) > f(3) >0 for all g >3. The proof is complete. |

B. Approximation Algorithm

The result above implies that the problem of computing a Nash-product fair allocation (if exists one) is also NP-
hard. This means there is no polynomial-time algorithm for solving this problem, unless P = NP. Alternatively, one can
investigate the similar question studied by Nguyen et al. [20], but for the case of Nash product fair allocation: Given a
problem instance, compute an « -Nash product fair allocation for the maximum possible value of «, that is, an

allocation such that every agent i gets a bundle of value of at least «.NPS..

Let 1 =(A,0O,U)be an instance problem with additive utility functions. We assume that, w.l.0.g, the Nash

product share of every agent is positive and that there is at least one allocation in which the utility of every agent is
positive. This ensures that the value of « is nonzero and bounded. Concretely, denote by c, (1) the largest value such

that there exists an allocation in which the utility of every agent is at least a fraction c, (1) of her Nash-product share.
For an allocation 7 =(7,,..., 7,) , we define

—mi u, (r;)
() =M s,

Now we can define ¢, (1) as follows:
cy(h)= mar?(a(ﬂ)

We will simply write ¢, when the instance | is clear from the context. If ¢, >1 then a Nash-product fair
allocation for | exists.

We consider the following optimization problem:

NPS-Opt
Input: An allocation setting (A,0O,U).
Output: Compute an allocation z that maximizes ¢, (I).

Note that NPS-Opt is NP-hard and thus our focus is on designing approximation algorithms which run in
polynomial time in the size of the instance and has small constant approximation factor. In what follows, we provide a
PTAS which relies on the following recent result by Nguyen et al. [20].

Theorem 3. (Nguyen et al. [20]). If the number of agents is fixed and for any constant ¢ < (0,1), one can
compute a set of feasible allocations P, such that for any allocation z [T, there is an allocation 7' P, such that
u (7)) =@A-e),(r,), forall ieA.
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Theorem 4. For a fixed number of agents, one can approximate NPS-Opt in polynomial time to within a factor
of 1- ¢, for any fixed constant & < (0,1) .

Proof. Let | = (A,O,U) be an allocation setting and a be a fixed constant. We first compute a set P, using the
algorithm of Nguyen et al. [20]. Furthermore, for each agent i we compute the approximate value (1-g)NPS; by
using the algorithm of Nguyen et al. [19]. Among the allocations in P, , we pick the one, says z*, that maximizes

u. (.

T
Algorithm. PTAS
Input: I=(A0OU) and £€(0,0).
Output: An allocation 7 that maximizes c, (1) .

1: Compute P, using Algorithm in [19]
2: Compute @, <[ (1-£)NPS; | all i

3. r*«argmax ., minigAM
o
4: Retrun 7 *
Now let 7 e[ be an optimal allocation for | such that u,(7;) > (1—&)NPS,, for all i=1,..,n. There is an

allocation 7' P, such that
U (') = -2 (7)) = ¢, (1).(L—£).NPS,

forall i =1,...,n. On the other hand, we have

min M >min M >c, ().
icA | (1-g)NPS, | ~ <A | (1-&)NPS,

It follows that u, (7, ) > (c, (1) —€).NPS; , for all i=1,...,n. This completes the proof. |

IV. CONCLUSION

In this paper we have introduced a new criterion of fairness which we call Nash-product share. This criterion
lies between the max-min share and the proportional share in the scale studied by Bouveret and Lemaitre [7]. We have
also studied the three problems and obtained several novel results. In fact, we have proved that both the problem of
computing the Nash-product share and the problem of checking whether there exists a Nash-product fair allocation for
a given allocation setting are NP-hard. In addition, we have presented a polynomial-time approximation scheme for the
problem of determining, given an allocation setting i, the largest value of c,(l) for which every agent receives a

bundle of value of at least a fraction c, (I) of her Nash-product share.
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TIEU CHUAN NASH-PRODUCT SHARE TRONG CAC BAI TOAN PHAN CHIA CONG BANG
Nguyén Trung Thanh, Lé Ding Nguyén
ttnguyen.cs@gmail.com, Idnguyenth1976@gmail.com

TOM TAT: Bii todn phdn chia tai nguyén mét cich céng biang gitta cdc khach hang la mét trong nhitng bai toan co ban thu hit
dirge nhiéu quan tam trong vai thap ki qua. C6 mot vdi tiéu chudn cho viéc ddanh gia thé ndo la mét phép phén chia cong bang
chang han nhw: tiéu chudn max-min shave, tiéu chudn proportional share, tiéu chuan minmax share, tiéu chudn envy-free, va tiéu
chuan CEEIL Trong bai bdo nay, ching téi giGi thiéu mgt tiéu chudn méi cho sw cong bang, ddt tén la tiéu chudn Nash-product
share, dwoc xdc dinh thong qua viéc tinh todn mét phép phan chia t6i da héa Nash-product cho truong hop cdc ham tham khéo
cong tinh cia khdch hang la giong nhau. Mgt phép phan chia théa man tiéu chudn nay dwoc goi la phép chia céng bang Nash-
product. Chiing toi chi ra rdng viéc tinh todn Nash- -product share 1& NP-kh6 thdm chi chi véi 2 khdch hang. Thém mita, ching t6i
chitng minh rang bdi todn kiém tra sw ton tai cua phép chia cong bang Nash-product 1a bai toan NP-khé khi $6 cdc khach hang
khéng phai la hang sé cho triede. Néu sé cdc khdach hang la hdng s6, ching 16i thu dirge mét lwge dé xdp xi voi thoi gian da thikc.
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