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ABSTRACT: Allocating indivisible items between agents in a fair manner is a fundamental problem that has attracted a lot of 

interests in the last decades due to the wide range of its applications. There are several common criteria for defining what a fair 

allocation is, including: max-min share, proportional share, min-max share, envy-freeness, CEEI. In this paper, we introduce a new 

notion of fairness, called Nash-product share, which can be determined through computing an allocation of maximum Nash-product 

welfare, assuming that all agents have the same additive utilities. An allocation satisfies this fairness criterion is called a Nash-

product fair allocation. We first show that computing the Nash-product share of every agent is NP-hard, even with two agents only. 

In addition, we prove that the problem of testing the existence of a Nash-product fair allocation is an NP-hard problem when the 

number of agents is part of the input. Finally, since a Nash-product fair allocation does not always exist, we investigate the problem 

that, given a problem instance, asks for the largest value c  for which there is an allocation such that every agent receives a subset 

of items of values of at least c  times her Nash-product share. For the case where the number of agents is constant, we present a 

polynomial-time approximation scheme (PTAS). 

Keywords: Fair allocation, max-min share, proportional share, Nash-product share, approximation algorithm, complexity. 

I. GIỚI THIỆU 

Fair allocation is a fundamental problem which is of interest in both computer science and economics due to the 

wide range of its applications (see a book chapter by Bouveret [8] and Lang and Rothe [15]). This problem concerns  

with allocating a finite set of goods (that may also be called items or objects) among a group of agents having different 

preferences over the subsets of goods. We will assume that the preferences of agents are presented by additive (or 

linear) utility functions. Our goal is to find an allocation that satisfies a certain notion of fairness. Among others, max-

min share, proportional share, and envy-freeness are the three notions that have been studied intensively in the 

literature. The max-min share of an agent is defined as the bundle that the agent can guarantee for herself when 

partitioning the items into bundles but choosing last. In a proportionally fair allocation between n   agents, each agent 

receives a bundle of value at least 1/ n  of the whole. An allocation is said to be envy-free if no agent wants to 

exchange her bundle of goods with that of any other agent. These three fairness criteria have attractive theoretical and 

practical properties (see the references cited above and the references therein). In [7], it was shown that envy-freeness 

is the strongest among the above fairness notions and implies proportional fairness, which implies max-min fairness-

the weakest one. On the other hand, as argued in the literature (see, for example, [14, 16, 17]), an allocation satisfying 

any of the these fairness notions is not guaranteed to exist in general. Furthermore, checking the existence of an envy-

free (proportional fair) allocation is NP-complete (see [7]) even in the simplest setting with two agents having the same 

additive utility functions. However, it is still not known yet if the same result applied to the case of max-min fair 

allocation. We would like to emphasize  that the idea of applying fairness criteria, which is consider in this paper, is 

orthogonal to the approach of maximizing egalitarian welfare (i.e., the utility of the worst-off agent), and Nash-product 

welfare (i.e., the product of individual agents’ utilities) which has been intensively studied in the literature.   

In this paper we introduce a new notion of fairness called Nash-product share, and study fair allocation 

problems with respect to this notion. Roughly speaking, a Nash-product share of an agent is the bundle of goods that 

she receives in an allocation of maximum Nash-product (the Nash-product of an allocation is computed as the n –th 

root of the product of individual agent utilities), assuming that all agents have the same utility functions. The 

motivation of the study of the Nash-product share is two folds. Firstly, the fair share typically depends on how to 

allocate fairly items among identical agents. Budish [9] takes this idea into account and introduce the notion of the 

max-min share, which relies on the determining of an allocation of maximum egalitarian welfare. Since maximizing 

the Nash-product welfare is also considered to be a fair way for allocating item (see, e.g., [3, 4, 5, 6, 18, 19]), it is very 

natural to define the notion of Nash-product share. Secondly, although checking the existence of proportionally fair 

allocation is NP-complete, we do not know yet if checking the existence of max-min fair allocation is also NP-

complete. While this question remains open, it is of great interest to examine if there is a fairness notion that lies 

between the proportional share and the max-min share in the scale of Bouveret and Lemaitre [7] such that checking the 

existence of an allocation satisfying this fairness criterion is NP-complete. 

Our contribution: We first show that the Nash-product share is stronger than the max-min share but weaker than 

the proportional share. Furthermore, we prove that computing the Nash-product share is NP-hard even when there are 
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only two agents with additive utility functions, and give a NP-hardness result for the problem of checking the existence 

of Nash-product fair allocations. Finally, we consider the problem which determines, given a problem instance, the 

largest value c  for which there exists an allocation in which every agent gets a bundle of goods of utility of at least c  

times her Nash-product share. 

A. Related work 

The max-min share was considered for the first time by Budish [9] as a fair criterion for the allocation of 

courses to students at the Harvard university. Since then, there has been a sequence of papers investigating this 

criterion  1, 2, 7, 20, 14, 17]. Bouveret and Lemaitre [7] prove that computing max-min shares is NP-hard but leave 

open the question of whether or not the problem of determining the existence of max-min fair allocations is NP-hard as 

well. For two agents, it is well-known that there is always a max-min fair allocation which can be found via a simple 

cut-and-choose protocol. However, this is not the case for any problem  instance with more than two agents [17]. 

Hence, many attempts have focused on finding a small constant value c  for which there always exists an allocation 

such that every agent gets a bundle of utility of at least a fraction c  of her max-min share. Procaccia and Wang [17] 

show that 2 / 3c and give an (exponential) algorithm for computing an allocation corresponding to this value c . By 

redesigning parts of the algorithm of Procaccia and Wang [17], Amanatidis et al. [1] show that a 2 / 3 -max-min fair 

allocation can be found in polynomial time. For a small number of agents, the problem is understood better. For three 

agents, it is shown by Amanatidis et al. [1] that 7 / 8c . It still remains open whether the lower bound of 7 / 8  can be 

further improved for a higher constant number of agents. Very recently, Aziz et al. [2] have given a polynomial-time 

approximation scheme for computing an optimal max-min fair allocation, assuming that the number of agents is fixed. 

For proportionally fair allocations, the problem of checking the existence of such allocations is NP-complete, 

even with two identical agents (Bouveret and Lemaitre [7]). A first lower bound for c , which is essentially a function 

depending both on the number of agents and on the maximum value of any agent for a single good, is provided by Hill 

[13].  Markakis and Psomas [16] present a polynomial-time algorithm for constructing an allocation with respect to this 

lower bound. An improvement of this bound is then proposed by Gourves et al. [11, 12].  

Since we will study the Nash-product share criterion in this paper, we would like to give a brief overview of 

results on the problem of computing maximum Nash-product allocations. This problem is shown to be NP-hard by 

Nguyen et al. [19]. In addition, it has been recently proved that there is a constant factor   for which one cannot have 

an approximation algorithm of a factor better than  [21]. A first approximation algorithm for the problem with an 

approximation factor of ( )O m  is given in [18], where m  denotes the number of goods. This result was improved by 

Cole and Gkatzelis in [6] where the authors obtained an approximation algorithm with a constant factor 2.89. Very 

recently, Cole et al. [4] have achieved a further improved factor of 2 for the problem. For the special case when all  

agents have the same utility functions, there is a polynomial time approximation scheme (PTAS) for the problem [18]. 

II. PROBLEM MODELS 

In a fair allocation we are given a finite set 1,...,A n  of agents and a finite set 1,..., mO o o  of indivisible 

and nonshareable goods (or items or objects). Each agent i  has an individual preference over the subsets of goods, 

which can be accessed through a utility function: : 2O

iu —a mapping from the set of all subsets of O  to the set 

of nonnegative rational numbers. We assume that every utility function 
iu is additive (or linear), that is, for any subset 

, ( ) ( )i io S
S O u S u o . Additive functions are perhaps the most simple and compact representation of utility 

functions and have been widely used in many fair allocation problems. The nonnegative value ( )iu o  is called the 

utility (or the value) of item o  for agent i . Let 1,..., nU u u , we call ( , , )A O U  an allocation setting. An allocation 

of goods between agents is defined as a partition 1( ,..., )n  of O  into n  disjoint subsets, where i  is the subsets 

of items that is assigned to agent i . We can also call i agent i 's share. For any allocation , it must hold that: 

 i j , for i j , (i.e., no item is given to multiple agents), 

 
1

n

ii
O , (i.e., every item is given to some agent). 

We denote by   the set of all such allocations . 

Given an allocation setting ( , , )A O U , we want to find an allocation 1( ,..., )n that is fair. There are several 

common criteria for fairness which have been studied intensively in the literature, including: max-min share, 

proportional share, min-max share, envy-free, and CEEI. For a detailed description of these fairness criteria, we refer to 

a recent paper by Bouveret and Lemaitre [7]. In this paper we introduce a new criterion, called Nash-product share, 

which are formally defined below. We also define the max-min share and proportional share since we will make a 

comparison between these notions of fairness in the next section. 

Definition. Given an allocation setting ( , , )A O U , define 
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 agent i 's max-min share as  

1MMS max min ( )n

i j i ju  

 agent i 's proportional share as 

1

( )
( )

PS

m

i j

ji

i

u o
u O

n n
 

 agent i 's Nash-product share as 
1

1

NPS max ( )
n n

i i j

j

u  

              An allocation 
1( ,..., )n

 is 

 a max-min fair allocation if ( ) MMSi i iu  for all i A  

 a proportional fair allocation if ( ) PSi i iu  for all i A  

 a Nash-product fair allocation if ( ) NPSi i iu  for all i A  

Let us consider the relationship our notions have to one another. Proportional fairness is the strongest among the 

above fairness notions and implies Nash product fairness, which implies max-min fairness. 

Proposition 1. Let ( , , )A O U  be an allocation setting and i A . We have PS NPS MMSi i i
, and, 

furthermore, all these fairness notions are distinct. 

Proof. The chain of inequalities follows from the inequalities between arithmetic and geometric. To see that the 

max-min fairness does not imply the Nash-product fairness, consider two agents with identical utility functions over 

four items. The items are valued 1, 2, 3, and 5, respectively. The max-min share of both agents is 5 (with allocations 

{(1,5), (2,3)} and {(5), (1, 2,3)} , whereas NPS 30 5i . But then no Nash-product fair allocation exists. That the 

other fairness notions are also distinct is again easy to show using the definitions of arithmetic and geometric.  

In this paper we study the following problems. 

 

NPS-Comp 

Given: An allocation setting ( , , )A O U , an agent i , and a number 0 . 

Question: Do we have NPSi ? 

 

NPS-Exist 

Given: An allocation setting ( , , )A O U . 

Question: Is there a Nash-product fair allocation? 

III. HARDNESS RESULT AND APPROXIMATION ALGORITHM 

A. Hardness result 

Theorem 1. NPS-Comp is NP-complete. 

Proof. One can easily see that NPS-Comp belongs to NP. We are now showing the NP-hardness via a reduction 

from the PARTITION problem: Given a set of positive numbers 1,..., mC a a  such that 
1

2
m

jj
a K  for some 

positive number K , the question is that whether there is a partition 1 2( , )C C  of C  such that 
1 2

j jj C j C
a a K ? 

Let C  be an instance of PARTITION, we construct an instance I  of NPS-Comp as follows. There are two agents 

and m  items 1,..., mo o , both agents have the same additive utility functions defined by 1 2( ) ( )j j ju o u o a  for all 

1,...,j m . Now we consider agent 1 and let K . The Nash-product share of agent 1 can be computed as  

1 21 2

1
( , )

NPS max . ,
j j

j ja C a CC C
a a  
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which is taken over all possible partition 
1 2( , )C C  of C . One can see easily that 

1NPS K  if and only if 

1 2
j jj C j C

a a K . In other words, I  is a yes-instance of NPS-Comp if and only if C  is a yes-instance of 

PARTITION, and this implies the NP-hardness of the first problem ■

Theorem 2. NPS-Exist is NP-hard. 

Proof. To prove NP-hardness part, we rely on a reduction from the NP-complete problem 3-Dimensional 

Matching (3DM), which is defined as follows: 

3-Dimensional Matching 

Given: Three disjoint sets 
1 1 1,..., , ,..., , ,...,q q qX x x Y y y Z z z  and a collection F  of 3-element 

subsets of X Y Z  (assuming, without loss of generality, that p q ). 

Question: Does F  contain a matching, i.e., a subcollection 'F F such that every element of X Y Z  is 

covered by exactly one member of 'F ? 

Here we assume that q  is even and that 3 / 2p q . Note that 3DM is still a NP-complete problem even when 

restricted to this setting. Let ( , , , )X Y Z F  be an instance of 3DM. We will construct a corresponding instance I  of 

NPS-Exist with p  agents and 2p q  items. Agent i corresponds to the element 
iF F , for [ ]i p , where [ ]p  is a 

shorthand for 1,..., p . There are 3q  items corresponding to 3q  elements of X Y Z . Additionally, we create / 2q  

dummy items 
1, /2..., qD d d .  

We now define the utility function of agent i, for [ ]i p . For a bundle ( , , )iF x y z F , the utilities of items 

,x y , and z  are, respectively, 4 ,2q q  and q . For the remaining 3 3q  items, we fix their ordering in an arbitrary way, 

and then assign a utility of 1 to each of the first 3q  items, and a utility of zero to each of the rest. All the dummy 

items have the same utility B , where B  is a positive integer such that 8 3B q . The exact value of B  will be 

determined later. One can see that our reduction constructed above can be computed in polynomial time.  

Let us compute the Nash product share for every agent [ ]i p . This amounts to finding a partition of the set of 

the items into p  disjoint subsets such that the product of the values of the subsets is maximized. Let 1( ,..., )p  be 

such an optimal partition. We first notice that if there is some agent j  who received a dummy item d  by the allocation 

, then d  is the only item assigned to her. Indeed, since there are only / 2q  dummy items, there are at most / 2q  

agents having dummy items in . We call those agents “big” agents, and the other ones “small” agents. If a big agent 

received a dummy item d  and another item t , then by transferring t  to any small agent, the Nash product  (i.e., the 

product of agents’ utilities) will be improved. The same argument can be applied to show that if an agent received an 

item from the first q / 2 + 3 largest items in the list, then that is the only one she had in . Hence, there are 3q  

worst-off agents in , each receiving an item of value 1. The Nash-product share of every agent is  

1/ 2//2 1/3NPS= .4 .2 . 8 . ,
p qqB q q q q B  

since 3 / 2p q . 

We claim that ( , , , )X Y Z F  is a yes-instance of 3DM if and only if there is a Nash-product fair allocation for the 

constructed instance I . 

( ) Suppose that ( , , , )X Y Z F  is a yes-instance of 3DM and let 'F F be a subset  that forms an exact cover 

of X Y Z . Let us consider an allocation '  of I  in which agent i  is assigned the bundle iF  if 'iF F , and one 

dummy item from D , otherwise. It is clear that all the items are allocated and there is no item shared by two or more 

agents. Therefore, each agent received a bundle whose value is at least 4 2 7q q q q .  

( ) Suppose that ( , , , )X Y Z F  is a no-instance of 3DM. Consider an optimal allocation  of I . As argued 

above, there is a subset T of q  agents who do not receive any dummy item from D . Let i  be a worst-off agent in T . 

Note that agent i  cannot get the bundle iF  since otherwise, any other agent j T  also receives her preferred bundle 

jF , and this implies that |jC j T forms an exact cover of X Y Z . The best assignment agent i  can get is a 

bundle containing two most preferred items from iF  and one item of value 1. Hence, the utility of her bundle is at most 

4 2 1 6 1q q q . 
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Now, by choosing an positive integer B  such that  

2/ 1/36 1 (8 ) . 7 ,qq q B q  

or, equivalently, 

3 3

6/ 6/

6 1 7
,

(8 ) (8 )q q

q q
B

q q
 

it follows that I  has a Nash-product fair allocation if and only if ( , , , )X Y Z F  is a yes-instance of 3DM. It remains to 

show that the number B  chosen above satisfies 8 3B q . It suffices to prove that 

3

6/

6 1
8 3 ,

(8 ) q

q
q

q
 

or, equivalently, 

6/ 3(8 3).(8 ) (6 1) .qq q q  

 

It is not hard to see that the function 
3 6/( ) (6 1) (8 3).(8 ) qf q q q q  is increasing on the interval [3, ) .  

Hence, it follows that ( ) (3) 0f q f  for all 3q . The proof is complete.                                                  ■ 

B. Approximation Algorithm 

The result above implies that the problem of computing a Nash-product fair allocation (if exists one) is also NP-

hard. This means there is no polynomial-time algorithm for solving this problem, unless P = NP. Alternatively, one can 

investigate the similar question studied by Nguyen et al. [20], but for the case of Nash product fair allocation: Given a 

problem instance, compute an -Nash product fair allocation for the maximum possible value of , that is, an 

allocation such that every agent i  gets a bundle of value of at least .NPS .i
 

Let ( , , )I A O U be an instance problem with additive utility functions. We assume that, w.l.o.g, the Nash 

product share of every agent is positive and that there is at least one allocation in which the utility of every agent is 

positive. This ensures that the value of is nonzero and bounded. Concretely, denote by ( )Nc I  the largest value such 

that there exists an allocation in which the utility of every agent is at least a fraction ( )Nc I  of her Nash-product share. 

For an allocation 
1( ,..., )n

, we define 

( )
( ) min

NPS

i i

i A
i

u
 

Now we can define ( )Nc I  as follows: 

( ) max ( )Nc I  

We will simply write Nc  when the instance I  is clear from the context. If 1Nc  then a Nash-product fair 

allocation for I exists. 

We consider the following optimization problem: 

NPS-Opt 

Input: An allocation setting ( , , )A O U . 

Output: Compute an allocation  that maximizes ( )Nc I . 

 

Note that NPS-Opt is NP-hard and thus our focus is on designing approximation algorithms which run in 

polynomial time in the size of the instance and has small constant approximation factor. In what follows, we provide a 

PTAS which relies on the following recent result by Nguyen et al. [20]. 

Theorem 3. (Nguyen et al. [20]). If the number of agents is fixed and for any constant (0,1) , one can 

compute a set of feasible allocations P  such that for any allocation , there is an allocation ' P  such that 

( ' ) (1 ) ( )i i i iu u , for all i A . 
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Theorem 4. For a fixed number of agents, one can approximate NPS-Opt in polynomial time to within a factor 

of 1 , for any fixed constant (0,1) . 

Proof. Let I = (A,O,U) be an allocation setting and a be a fixed constant. We first compute a set P  using the  

algorithm of Nguyen et al. [20]. Furthermore, for each agent i  we compute the approximate value (1 )NPSi
 by 

using the algorithm of Nguyen et al. [19]. Among the allocations in P , we pick the one, says * , that maximizes 

( )
min .

(1 )NPS

i i

i A
i

u
 

Algorithm. PTAS 

Input: ( , , )I A O U   and (0,1) . 

Output: An  allocation  that maximizes ( )Nc I . 

1: Compute P  using Algorithm in [19] 

2: Compute (1 )NPSi i  all i 

3: 
( )

* arg max min i i

P i A

i

u
 

4: Retrun *  

 

Now let  be an optimal allocation for I  such that ( ) (1 )NPSi i iu , for all 1,...,i n . There is an 

allocation ' P  such that 

( ' ) (1 ) ( ) ( ).(1 ).NPSi i i i N iu u c I  

for all 1,...,i n . On the other hand, we have 

* '( ) ( )
min min ( ).

(1 )NPS (1 )NPS

i i i i

N
i A i A

i i

u u
c I  

It follows that 
*( ) ( ( ) ).NPSi i N iu c I , for all 1,...,i n . This completes the proof.                               ■ 

 

IV.  CONCLUSION 

In this paper we have introduced a new criterion of fairness which we call Nash-product share. This criterion 

lies between the max-min share and the proportional share in the scale studied by Bouveret and Lemaitre [7]. We have 

also studied the three problems and obtained several novel results. In fact, we have proved that both the problem of 

computing the Nash-product share and the problem of checking whether there exists a Nash-product fair allocation for 

a given allocation setting are NP-hard. In addition, we have presented a polynomial-time approximation scheme for the 

problem of determining, given an allocation setting i , the largest value of ( )Nc I  for which every agent receives a 

bundle of value of at least a fraction ( )Nc I  of her Nash-product share. 
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TIÊU CHUẨN NASH-PRODUCT SHARE TRONG CÁC BÀI TOÁN PHÂN CHIA CÔNG BẰNG 

Nguyễn Trung Thành, Lê Đăng Nguyên 

ttnguyen.cs@gmail.com, ldnguyenth1976@gmail.com 

TÓM TẮT: Bài toán phân chia tài nguyên một cách công bằng giữa các khách hàng là một trong những bài toán cơ bản thu hút 

được nhiều quan tâm trong vài thập kỉ qua. Có một vài tiêu chuẩn cho việc đánh giá thế nào là một phép phân chia công bằng, 

chẳng hạn như: tiêu chuẩn max-min share, tiêu chuẩn proportional share, tiêu chuẩn minmax share, tiêu chuẩn envy-free, và tiêu 

chuẩn CEEI. Trong bài báo này, chúng tôi giới thiệu một tiêu chuẩn mới cho sự công bằng, đặt tên là tiêu chuẩn Nash-product 

share, được xác định thông qua việc tính toán một phép phân chia tối đa hóa Nash-product cho trường hợp các hàm tham khảo 

cộng tính của khách hàng là giống nhau. Một phép phân chia thỏa mãn tiêu chuẩn này được gọi là phép chia công bằng Nash-

product. Chúng tôi chỉ ra rằng việc tính toán Nash-product share là NP-khó thậm chí chỉ với 2 khách hang. Thêm nữa, chúng tôi 

chứng minh rằng bài toán kiểm tra sự tồn tại của phép chia công bằng Nash-product là bài toán NP-khó khi số các khách hàng 

không phải là hằng số cho trước. Nếu số các khách hàng là hằng số, chúng tôi thu được một lược đồ xấp xỉ với thời gian đa thức. 
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