NHẬN DẠNG PAYLOAD ĐỘC VỚI HƯỚNG TIẾP CẬN TẬP MÔ HÌNH MÁY HỌC
DOI: 10.15625/vap.2015.000189
Abstract
Sự sinh sôi nẩy nở nhanh chóng của các payload độc (mã độc được ngụy trang trong nội dung gói tin) đang trở thành mối nguy hại trong vấn đề toàn dữ liệu và an ninh mạng. Trong số nhiều giải pháp được đề xuất bởi cộng đồng nghiên cứu nhằm đối phó với mối nguy hại gia tăng này, hướng tiếp cận tập mô hình máy học đã bộc lộ tính ưu việt đối với vấn đề cải thiện độ chính xác nhận dạng. Tuy nhiên, sức mạnh của một tập mô hình phụ thuộc lớn vào tính đa dạng của các mô hình thành viên. Trong ngữ cảnh này, chúng tôi đề xuất một phương pháp mới và hiệu quả để xây dựng tập mô hình máy học cho bài toán nhận dạng payload độc. Trong hướng tiếp cận của chúng tôi, các mô hình thành viên được đa dạng hóa bằng cách thay đổi tham số từ một kỹ thuật biểu diễn dữ liệu được đề xuất. Kết quả thực nghiệm chứng minh rằng phương pháp chúng tôi đề xuất cho kết quả tốt hơn so với những phương pháp thông dụng khác.
Keywords
Nội dung gói tin (payload), nhận dạng payload (payload detection), tập mô hình máy học (classifier ensemble), tính đa dạng mô hình (classifier diversity)
Full Text:
PDF (Tiếng Việt)Copyright (c) 2016 PROCEEDING of Publishing House for Science and Technology
PROCEEDING
PUBLISHING HOUSE FOR SCIENCE AND TECHNOLOGY
Website: http://vap.ac.vn
Contact: nxb@vap.ac.vn