HỆ THỐNG GỢI Ý SỬ DỤNG THUẬT TOÁN TỐI ƯU BẦY ĐÀN

Phạm Minh Chuẩn, Lê Thanh Hương, Trần Đình Khang, Nguyễn Văn Hậu



DOI: 10.15625/vap.2015.000161

Abstract


Kỹ thuật lọc cộng tác (Collaborative Filtering - CF) là một kỹ thuật gợi ý phổ biến nhất được sử dụng nhiều trong các hệ thống gợi ý đã được tích hợp trong các website thương mại điện tử (chẳng hạn như amazon.com, barnesandnoble.com, Yahoo! news, TripAdvisor.com). Kỹ thuật CF dựa trên giả thiết rằng những người dùng (user) có cùng sở thích thì sẽ quan tâm một tập item tương tự. Phương pháp phân cụm lọc cộng tác (Iterative Clustered CF - ICCF) và lặp cộng tác tối ưu trọng số sử dụng thuật toán PSO (PSO-Feature Weighted) thể hiện tính hiệu quả cho hệ gợi ý mà giá trị đánh giá thuộc trong tập {1, 2,…, 5}. Tuy nhiên, các kỹ thuật đó không thể trực tiếp áp dụng cho các hệ thống gợi ý trong thực tế mà giá trị đánh giá trong tập {0, 1}. Do vậy, bài báo này đề xuất việc cải tiến hai phương pháp ICCF và PSO–Feature Weighted để có thể áp dụng được cho các hệ gợi ý mà giá trị đánh giá thuộc tập {0, 1}. Kết quả thực nghiệm của hai phương pháp mà chúng tôi đưa ra áp dụng trên bộ dữ liệu hệ gợi ý công việc cho thấy độ chính xác mô hình dự đoán có cải thiện rõ rệt so với phương pháp CF truyền thống đồng thời cũng giải quyết được vấn đề dữ liệu thưa mà phương pháp CF thường gặp phải.

Keywords


Hệ thống gợi ý, kỹ thuật lọc cộng tác dựa trên Item, kỹ thuật lọc cộng tác dựa trên User, phân cụm lọc cộng tác, tối ưu trọng số lọc cộng tác, thuật toán tối ưu bầy đàn, phân cụm Spectral, thuật toán k-mean



Copyright (c) 2016 PROCEEDING of Publishing House for Science and Technology



PROCEEDING

PUBLISHING HOUSE FOR SCIENCE AND TECHNOLOGY

Website: http://vap.ac.vn

Contact: nxb@vap.ac.vn